Solution for a Single Free Particle: Difference between revisions
Carlosmsilva (talk | contribs) m (Added a section for the general schrodinger equation) |
Carlosmsilva (talk | contribs) |
||
(12 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
==The General Schrödinger Equation== | ==The General Schrödinger Equation== | ||
The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in [//en.wikipedia.org/wiki/Bra–ket_notation Bra-Ket notation] is: | |||
<math>i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle</math> | |||
Here <math>i = \sqrt{-1}</math> is the [//en.wikipedia.org/wiki/Imaginary_unit imaginary unit]. <math>\hbar</math> is the [//en.wikipedia.org/wiki/Planck_constant reduced Planck's constant]. <math>\vert\Psi(t)\rangle</math> is the state vector of the quantum system at time <math>t</math>, and <math>\hat H</math> is the [//en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics) Hamiltonian operator]. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation: | |||
<math> | |||
i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) | |||
</math> | |||
<math>\Psi(\vec{r},t)</math> becomes the wave function of the particle at position <math>\vec{r}</math> and time <math>t</math>. <math>V(\vec{r},t)</math> is the scalar potential energy of the particle at position <math>\vec{r}</math> and time <math>t</math>. | |||
==Time-independent Potential and Separation of Variables== | |||
The [[Potential Energy | potential energy]] of a system is often not an explicit function of time, that is <math>\frac{\partial V}{\partial t} = 0</math>. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as: | |||
<math> | |||
i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) | |||
</math> | |||
This, along with the [//en.wikipedia.org/wiki/Spectral_theorem spectral theorem] allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function: | |||
<math> | |||
\Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow | |||
i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t) | |||
</math> | |||
Expanding the derivatives through the [//en.wikipedia.org/wiki/Chain_rule chain rule] yields: | |||
<math> | |||
i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) | |||
</math> | |||
Dividing both sides of the equation by <math>\psi(\vec{r})\phi(t)</math>: | |||
<math> | |||
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) | |||
</math> | |||
The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully [https://en.wikipedia.org/wiki/Separation_of_variables#Partial_differential_equations separated variables], allowing us to solve for <math>\phi(t)</math> and <math>\psi(\vec{r})</math> separatedely. Doing so yields: | |||
<div class="toccolours"> | |||
====Time-Independent Schrödinger Equation for 1 Particle==== | |||
<math>- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r})</math> | |||
</div> | |||
<div class="toccolours"> | |||
====Space-Independent Schrödinger Equation for 1 Particle==== | |||
<math>\frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t)</math> | |||
</div> | |||
A full derivation of this equations can be found below: | |||
<div class="toccolours mw-collapsible mw-collapsed"> | |||
====Derivation of the Time-Independent and Space-Independent Schrödinger Equation==== | |||
<div class="mw-collapsible-content"> | |||
Start from the Separated Equation for 1 Particle: | |||
<math> | |||
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) | |||
</math> | |||
Take the derivative of both sides in respect to time: | |||
<math> | |||
i\hbar\left( | |||
\frac{\ddot{\phi}}{\phi} | |||
-\frac{\dot{\phi}^2}{\phi^2} | |||
\right) = 0 | |||
</math> | |||
From now on, for the sake of simplicity, [//en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation Newton's Notation] will be used to express derivatives. Simplifying the equation above yields: | |||
<math> | |||
\ddot{\phi}\phi = \dot{\phi}^2 | |||
</math> | |||
Treat <math>\phi</math> as an independent variable and define <math>v(\phi) = \dot{\phi}</math> | |||
<math> | |||
\frac{d}{dt}\left(\dot{\phi}\right)\phi = \left( \dot{\phi}\right)^2 | |||
\rightarrow | |||
\frac{d}{dt}\left(v(\phi)\right)\phi = v^2(\phi) | |||
</math> | |||
By the chain rule: | |||
<math> | |||
\frac{d\phi}{dt}\frac{dv}{d\phi}\phi = v^2(\phi) \rightarrow | |||
\frac{dv}{d\phi}\phi = v(\phi) | |||
</math> | |||
Re-writting in differential form: | |||
<math> | |||
\frac{dv}{v}=\frac{d\phi}{\phi} | |||
</math> | |||
Integrate both sides yields: | |||
<math> | |||
\int\frac{dv}{v}=\int\frac{d\phi}{\phi} | |||
\rightarrow \ln{v} = \ln{\phi} + C_1 | |||
</math> | |||
Solve for <math>v(\phi)</math> and simplify arbitrary constants: | |||
<math> | |||
v(\phi)=C_1\phi | |||
</math> | |||
Substitute in the definition of <math>v(\phi)</math>: | |||
<math> | |||
\frac{d\phi}{dt} = C_1 \phi | |||
</math> | |||
Rewrite in differential form and integrate: | |||
<math> | |||
\int \frac{d\phi}{\phi} = \int C_1 dt | |||
\rightarrow | |||
\ln{\phi} = C_1 t + C_2 | |||
</math> | |||
Solving for <math>\phi</math> and simplifying arbitrary constants yields: | |||
<math> | |||
\phi(t) = C_2 e^{C_1 t} | |||
</math> | |||
Substituting this relation back in the Schrödinger Equation yields: | |||
<math> | |||
C_1 = -i\frac{E+V}{\hbar} | |||
</math> | |||
Therefore: | |||
<math> | |||
\frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar} | |||
</math> | |||
Substituting this relation back in the the Separated Equation for 1 Particle: | |||
<math> | |||
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) | |||
\rightarrow | |||
- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) | |||
</math> | |||
Which is the Time-Independent Schrödinger Equation. | |||
:: | |||
</div> | |||
</div> | |||
==The Free Particle== | |||
The free particle is a special case of the Schrödinger Equation where the potential is null (or constant) everywhere in space: | |||
<math> | |||
V(\vec{r},t) = 0 | |||
</math> | |||
This potential is time and space independent, therefore we may use the equations found in the section above: | |||
<math> | |||
\Psi(\vec{r},t) = A\psi(\vec{r})e^{-i\frac{E}{\hbar}t} | |||
</math> | |||
<math> | |||
- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) = E \psi(\vec{r}) | |||
</math> | |||
The latter is a form of the [//en.wikipedia.org/wiki/Helmholtz_equation Helmholtz Equation]. There exists a general solution for an unbounded geometry in [//mathworld.wolfram.com/SphericalCoordinates.html Spherical Coordinates]: | |||
<math> | |||
\psi (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{n=-\ell}^\ell \left( a_{\ell n} j_\ell \left( \frac{\sqrt{2mE}}{\hbar} r \right) + b_{\ell n} y_\ell \left(\frac{\sqrt{2mE}}{\hbar}r\right) \right) Y^n_\ell(\theta,\varphi) | |||
</math> | |||
Here <math>n</math> and <math>\ell</math> are quantum numbers. <math>a_{\ell n}</math> and <math>b_{\ell n}</math> are amplitudes that define the wave packet. <math>j_\ell</math> and <math>y_\ell</math> are the [//en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions spherical Bessel functions], and <math>Y^n_\ell(\theta,\varphi)</math> are the [//en.wikipedia.org/wiki/Spherical_harmonics spherical harmonics]. | |||
===General Solution in 1 Dimension=== | |||
In one dimension our equation takes the form: | |||
<math> | |||
- \frac {\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} = E \psi(x) | |||
</math> | |||
Define <math>k^2 \equiv \frac{2mE}{\hbar^2}</math> and rewrite: | |||
<math> | |||
\frac{\partial^2\psi(x)}{\partial x^2} = -k^2 \psi(x) | |||
</math> | |||
Assume <math>\psi</math> as an independent variable, then define <math>v \equiv \frac{\partial\psi(x)}{\partial x}</math>. Then: | |||
<math> | |||
\frac{\partial v}{\partial x} = -k^2 \psi \rightarrow | |||
\frac{\partial v}{\partial \psi} \frac{\partial \psi}{\partial x}= -k^2 \psi | |||
\rightarrow | |||
\frac{\partial v}{\partial \psi}v = - k^2\psi | |||
</math> | |||
Rewrite in differential form and integrate: | |||
<math> | |||
\int v \partial v = -k^2 \int \psi \partial \psi \rightarrow | |||
\frac{v^2}{2}= -k^2\left( | |||
\frac{\psi^2}{2} + C_1 | |||
\right) | |||
</math> | |||
Solving for <math>v</math> and simplifying arbitrary constants: | |||
<math> | |||
v = \pm i k \sqrt{\psi^2 + C_1} | |||
</math> | |||
Substituting the definition of <math>v</math>: | |||
<math> | |||
\frac{\partial\psi(x)}{\partial x} = \pm i k \sqrt{\psi^2 + C_1} | |||
</math> | |||
Re-writing in differential form and integrating: | |||
<math> | |||
\int\frac{\partial\psi}{\sqrt{\psi^2 + C_1}} = \pm i k \int \partial x | |||
\rightarrow | |||
\ln{\left(\psi + \sqrt{\psi^2+C_1}\right)}= \pm i k x + C_2 | |||
</math> | |||
Solving for <math>\psi</math> and simplifying arbitrary constants: | |||
<math> | |||
\psi(x)= C_1 e^{ikx} + C_2 e^{-ikx} | |||
</math> | |||
Notice, however, that since <math>k</math> is a function of the energy, this means a more general solution may be obtained by adding the contribution of many different energy levels: | |||
<math> | |||
\psi(x)= \sum_n A_n e^{i k_n x} + B_n e^{-ik_n x} | |||
</math> | |||
Furthermore it is possible to show that, if <math>\Psi(x,0)</math> is known, then: | |||
<math> | |||
\Psi(x,t) = \sqrt{\frac{m}{2\pi\hbar i}\frac{1}{t}}\int_{-\infty}^{\infty}\psi\left(y\right)e^{-\frac{m}{2\hbar i}\frac{\left(x-y\right)^2}{t}}dy | |||
</math> | |||
==References== | ==References== |
Latest revision as of 08:51, 17 April 2022
Claimed by Carlos M. Silva (Spring 2022)
The Schrödinger Equation is a linear partial differential equation that governs the wave function of a quantum mechanical system[1]. Similar to Newton's Laws, the Schrödinger Equation is an equation of motion, meaning that it's capable of describing the time-evolution of a position analog of a system.
The free particle is the name given to the system consisting of a single particle subject to a null or constant potential everywhere in space. It's the simplest system to which the Schrödinger Equation has a solution with physical meaning.
Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.
The General Schrödinger Equation
The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in Bra-Ket notation is:
[math]\displaystyle{ i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle }[/math]
Here [math]\displaystyle{ i = \sqrt{-1} }[/math] is the imaginary unit. [math]\displaystyle{ \hbar }[/math] is the reduced Planck's constant. [math]\displaystyle{ \vert\Psi(t)\rangle }[/math] is the state vector of the quantum system at time [math]\displaystyle{ t }[/math], and [math]\displaystyle{ \hat H }[/math] is the Hamiltonian operator. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation:
[math]\displaystyle{ i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) }[/math]
[math]\displaystyle{ \Psi(\vec{r},t) }[/math] becomes the wave function of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math]. [math]\displaystyle{ V(\vec{r},t) }[/math] is the scalar potential energy of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math].
Time-independent Potential and Separation of Variables
The potential energy of a system is often not an explicit function of time, that is [math]\displaystyle{ \frac{\partial V}{\partial t} = 0 }[/math]. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:
[math]\displaystyle{ i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) }[/math]
This, along with the spectral theorem allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:
[math]\displaystyle{ \Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]
Expanding the derivatives through the chain rule yields:
[math]\displaystyle{ i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]
Dividing both sides of the equation by [math]\displaystyle{ \psi(\vec{r})\phi(t) }[/math]:
[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]
The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully separated variables, allowing us to solve for [math]\displaystyle{ \phi(t) }[/math] and [math]\displaystyle{ \psi(\vec{r}) }[/math] separatedely. Doing so yields:
Time-Independent Schrödinger Equation for 1 Particle
[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]
Space-Independent Schrödinger Equation for 1 Particle
[math]\displaystyle{ \frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t) }[/math]
A full derivation of this equations can be found below:
Derivation of the Time-Independent and Space-Independent Schrödinger Equation
Start from the Separated Equation for 1 Particle:
[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]
Take the derivative of both sides in respect to time:
[math]\displaystyle{ i\hbar\left( \frac{\ddot{\phi}}{\phi} -\frac{\dot{\phi}^2}{\phi^2} \right) = 0 }[/math]
From now on, for the sake of simplicity, Newton's Notation will be used to express derivatives. Simplifying the equation above yields:
[math]\displaystyle{ \ddot{\phi}\phi = \dot{\phi}^2 }[/math]
Treat [math]\displaystyle{ \phi }[/math] as an independent variable and define [math]\displaystyle{ v(\phi) = \dot{\phi} }[/math]
[math]\displaystyle{ \frac{d}{dt}\left(\dot{\phi}\right)\phi = \left( \dot{\phi}\right)^2 \rightarrow \frac{d}{dt}\left(v(\phi)\right)\phi = v^2(\phi) }[/math]
By the chain rule:
[math]\displaystyle{ \frac{d\phi}{dt}\frac{dv}{d\phi}\phi = v^2(\phi) \rightarrow \frac{dv}{d\phi}\phi = v(\phi) }[/math]
Re-writting in differential form:
[math]\displaystyle{ \frac{dv}{v}=\frac{d\phi}{\phi} }[/math]
Integrate both sides yields:
[math]\displaystyle{ \int\frac{dv}{v}=\int\frac{d\phi}{\phi} \rightarrow \ln{v} = \ln{\phi} + C_1 }[/math]
Solve for [math]\displaystyle{ v(\phi) }[/math] and simplify arbitrary constants:
[math]\displaystyle{ v(\phi)=C_1\phi }[/math]
Substitute in the definition of [math]\displaystyle{ v(\phi) }[/math]:
[math]\displaystyle{ \frac{d\phi}{dt} = C_1 \phi }[/math]
Rewrite in differential form and integrate:
[math]\displaystyle{ \int \frac{d\phi}{\phi} = \int C_1 dt \rightarrow \ln{\phi} = C_1 t + C_2 }[/math]
Solving for [math]\displaystyle{ \phi }[/math] and simplifying arbitrary constants yields:
[math]\displaystyle{ \phi(t) = C_2 e^{C_1 t} }[/math]
Substituting this relation back in the Schrödinger Equation yields:
[math]\displaystyle{ C_1 = -i\frac{E+V}{\hbar} }[/math]
Therefore:
[math]\displaystyle{ \frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar} }[/math]
Substituting this relation back in the the Separated Equation for 1 Particle:
[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) \rightarrow - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]
Which is the Time-Independent Schrödinger Equation.
The Free Particle
The free particle is a special case of the Schrödinger Equation where the potential is null (or constant) everywhere in space:
[math]\displaystyle{ V(\vec{r},t) = 0 }[/math]
This potential is time and space independent, therefore we may use the equations found in the section above:
[math]\displaystyle{ \Psi(\vec{r},t) = A\psi(\vec{r})e^{-i\frac{E}{\hbar}t} }[/math]
[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) = E \psi(\vec{r}) }[/math]
The latter is a form of the Helmholtz Equation. There exists a general solution for an unbounded geometry in Spherical Coordinates:
[math]\displaystyle{ \psi (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{n=-\ell}^\ell \left( a_{\ell n} j_\ell \left( \frac{\sqrt{2mE}}{\hbar} r \right) + b_{\ell n} y_\ell \left(\frac{\sqrt{2mE}}{\hbar}r\right) \right) Y^n_\ell(\theta,\varphi) }[/math]
Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ \ell }[/math] are quantum numbers. [math]\displaystyle{ a_{\ell n} }[/math] and [math]\displaystyle{ b_{\ell n} }[/math] are amplitudes that define the wave packet. [math]\displaystyle{ j_\ell }[/math] and [math]\displaystyle{ y_\ell }[/math] are the spherical Bessel functions, and [math]\displaystyle{ Y^n_\ell(\theta,\varphi) }[/math] are the spherical harmonics.
General Solution in 1 Dimension
In one dimension our equation takes the form:
[math]\displaystyle{ - \frac {\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} = E \psi(x) }[/math]
Define [math]\displaystyle{ k^2 \equiv \frac{2mE}{\hbar^2} }[/math] and rewrite:
[math]\displaystyle{ \frac{\partial^2\psi(x)}{\partial x^2} = -k^2 \psi(x) }[/math]
Assume [math]\displaystyle{ \psi }[/math] as an independent variable, then define [math]\displaystyle{ v \equiv \frac{\partial\psi(x)}{\partial x} }[/math]. Then:
[math]\displaystyle{ \frac{\partial v}{\partial x} = -k^2 \psi \rightarrow \frac{\partial v}{\partial \psi} \frac{\partial \psi}{\partial x}= -k^2 \psi \rightarrow \frac{\partial v}{\partial \psi}v = - k^2\psi }[/math]
Rewrite in differential form and integrate:
[math]\displaystyle{ \int v \partial v = -k^2 \int \psi \partial \psi \rightarrow \frac{v^2}{2}= -k^2\left( \frac{\psi^2}{2} + C_1 \right) }[/math]
Solving for [math]\displaystyle{ v }[/math] and simplifying arbitrary constants:
[math]\displaystyle{ v = \pm i k \sqrt{\psi^2 + C_1} }[/math]
Substituting the definition of [math]\displaystyle{ v }[/math]:
[math]\displaystyle{ \frac{\partial\psi(x)}{\partial x} = \pm i k \sqrt{\psi^2 + C_1} }[/math]
Re-writing in differential form and integrating:
[math]\displaystyle{ \int\frac{\partial\psi}{\sqrt{\psi^2 + C_1}} = \pm i k \int \partial x \rightarrow \ln{\left(\psi + \sqrt{\psi^2+C_1}\right)}= \pm i k x + C_2 }[/math]
Solving for [math]\displaystyle{ \psi }[/math] and simplifying arbitrary constants:
[math]\displaystyle{ \psi(x)= C_1 e^{ikx} + C_2 e^{-ikx} }[/math]
Notice, however, that since [math]\displaystyle{ k }[/math] is a function of the energy, this means a more general solution may be obtained by adding the contribution of many different energy levels:
[math]\displaystyle{ \psi(x)= \sum_n A_n e^{i k_n x} + B_n e^{-ik_n x} }[/math]
Furthermore it is possible to show that, if [math]\displaystyle{ \Psi(x,0) }[/math] is known, then:
[math]\displaystyle{ \Psi(x,t) = \sqrt{\frac{m}{2\pi\hbar i}\frac{1}{t}}\int_{-\infty}^{\infty}\psi\left(y\right)e^{-\frac{m}{2\hbar i}\frac{\left(x-y\right)^2}{t}}dy }[/math]
References
- ↑ Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8.