2-Dimensional Motion: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Created page with "'''Kseniia Suleimanova Fall 2025'''")
 
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Kseniia Suleimanova Fall 2025'''
'''Kseniia Suleimanova Fall 2025'''
==The Main Idea==
When objects move in 2-dimensional space, their motion can be described in <math>\hat{x},\ \hat{y}</math> coordinates. The motion for each of those axes can be viewed independently. Another approach is using vectors (i.e. coordinate (5, 3) can be seen as vector <math>\langle 5,\ 3 \rangle</math>).
===Displacement and distance===
Imagine we have 2 points and origin O: A = <math>\langle a,\ b \rangle</math>, B = <math>\langle c,\ d \rangle</math>
A point particle moves from origin to point A and then to point B.
The displacement can be viewed as adding those vectors:
<math>\langle a,\ b \rangle + \langle c,\ d \rangle = \langle a + c,\ b + d \rangle</math>.
The distance is the sum of magnitudes of those vectors:
<math>\sqrt{a^{2} + b^{2}} + \sqrt{c^{2} + d^{2}}</math>
===Moving with a constant velocity===
Velocity is the derivative of the position vector. In 2-dimensional space velocity looks the following:
<math>\vec{v} = \frac{\Delta \vec{r}}{\Delta t} = \left\langle \frac{\Delta x}{\Delta t},\frac{\Delta y}{\Delta t} \right\rangle</math>, so moving for <math>t</math> seconds with velocity <math>\vec{r}</math> can be represented as <math>\vec{v} \cdot t = \left\langle \frac{\Delta x}{\Delta t} \cdot t,\frac{\Delta y}{\Delta t} \cdot t \right\rangle</math>
===Moving with constant acceleration===
In 2-dimensional space acceleration is <math>\vec{a} = \frac{\Delta \vec{v}}{\Delta t}= \left\langle \frac{\Delta v_x}{\Delta t},\frac{\Delta v_y}{\Delta t} \right\rangle</math>.
A standard formula for position update is still applicable for vectors in 2-dimensional space: <math>\vec{r}(t)=\vec{r}_0+\vec{v}_0 t+\tfrac{1}{2}\vec{a}\,t^{2}=\langle x_0+v_{0x}t+\tfrac{1}{2}a_x t^{2},\ y_0+v_{0y}t+\tfrac{1}{2}a_y t^{2}\rangle</math>
==Computational models==
===Projectile motion===
https://www.glowscript.org/#/user/ksuleimanova/folder/MyPrograms/program/projectilemotiondemo - link to execute the code
[[File:p_motion.jpg]]
<pre>
Web VPython 3.2
scene.range = 10
scene.center = vector(5, 5, 0)
r = vector(0, 10, 0)
v = vector(3, 2, 0)
a = vector(0, -9.8, 0)
dt = 0.05
ball = sphere(pos=r, radius=0.2, color=color.red, make_trail=True)
gx = graph(title="Projectile Motion",
          xtitle="Time, s", ytitle="Position, m")
xplot = gcurve(color=color.blue, label="x(t)")
yplot = gcurve(color=color.green, label="y(t)")
t = 0
while r.y >= 0:
    rate(100)
    v = v + a * dt
    r = r + v * dt
    ball.pos = r
    xplot.plot(t, r.x)
    yplot.plot(t, r.y)
    t = t + dt
</pre>
In this code the position is updated every small increment of time, using the position update formula for constant acceleration, involving velocity first, and then position:
<pre>
v = v + a * dt
r = r + v * dt
</pre>
'''Circular motion'''
In the circular velocity magnitude is constant, while its direction changes.
https://www.glowscript.org/#/user/ksuleimanova/folder/MyPrograms/program/circularmotion - link to execute the code
[[File:circular_mo.jpg]]
<pre>
Web VPython 3.2
scene.width = 600
scene.height = 600
R = 5
omega = 1
dt = 0.05
particle = sphere(pos=vector(R,0,0), radius=0.5, color=color.red, make_trail=True)
arrow_velocity = arrow(pos=particle.pos, axis=vector(0,1,0), color=color.blue, shaftwidth=0.1)
arrow_accel = arrow(pos=particle.pos, axis=vector(0,1,0), color=color.green, shaftwidth=0.1)
t = 0
v_mag = 3
velocity = vector(0, v_mag, 0)
path = curve(color=color.yellow)
while t < 10:
    particle.pos = particle.pos + velocity*dt
    accel = - (velocity.mag**2 / R) * particle.pos.norm()
    velocity = velocity + accel*dt
    arrow_velocity.pos = particle.pos
    arrow_velocity.axis = velocity.norm()
    arrow_accel.pos = particle.pos
    arrow_accel.axis = accel.norm()
    path.append(pos=particle.pos)
    t += dt
</pre>
This code also uses position update for each time increment.
==Examples==
===Easy===
'''Problem:'''
A point particle starts at a point (0, 5)m on a flat surface an moves with a constant velocity <math>\langle 4,\ 1 \rangle m</math>. Find it's position after 5 seconds.
'''Solution:'''
Intial position vector is <math>\langle 0,\ 5 \rangle m</math>
As the velocity is constant, acceleration is 0. Insert all the data into the position update formula:
<math>\vec{r}(t)=\vec{r}_0+\vec{v}_0 t+\tfrac{1}{2}\vec{a}\,t^{2}=\vec{r}_0+\vec{v}_0 t + 0 = \langle 0,\ 5 \rangle + \langle 4,\ 1 \rangle \cdot 5 = \langle 20,\ 10 \rangle m</math>
===Medium===
'''Problem:'''
A bug on the table travels from point (1, 2)m to point (2, 1)m and then to (2, 2)m. The whole path takes 2 seconds. Find average speed and average velocity.
'''Solution:'''
Displacement is <math>\langle 2,\ 2 \rangle - \langle 1,\ 2 \rangle = \langle 1,\ 0 \rangle m</math>
Distance is the length of the path: <math>\sqrt{(2 - 1)^{2} + (1 - 2)^{2}} + \sqrt{(2 - 2)^{2} + (2 - 1)^{2}} = \sqrt{2} + \sqrt{1} = 2.41 m</math>
Average speed: <math>2.41 / 2 = 1.21 m/s</math>
Average velocity: <math>\langle 1,\ 0 \rangle / 2 = \langle 0.5,\ 0 \rangle m/s</math>
===Hard===
'''Problem:'''
The ball is thrown from the building with the height 10 meters. The initial velocity of the ball is <math>\langle 3,\ 2 \rangle \textit{m/s}</math> find the time and position when the ball reaches its maximum height.
'''Solution:'''
This is the projectile motion problem in 2-dimensional space. The most convenient approach is to view vertical and horizontal motion independently. We know that horizontal component of the velocity stays the same, while <math>\vec{v}_{y} = \vec{v}_{y_{init}} - g t</math> - the ball moves with a constant acceleration. For the <math>\hat{y}</math> we can use the position update formula for constant acceleration <math>-g</math>: <math>r_{y}(t)=r_{y_0}+\vec{v_{y_0}} t-\tfrac{1}{2}\vec{g}\,t^{2}</math>. This is a parabola that has a maximum value. Insert numerical values and solve the equation: <math>r_{y}(t)=10+2 t-\tfrac{1}{2}\cdot 9.8 \cdot t^{2}</math>. Maximum value is achieved at <math>t = 0.21 s</math>. At <math>t_{max} = 0.21 s</math> x-coordinate is <math>r_{x_{init}} = \vec{v_x} \cdot t_{max} = 0 + 3 \cdot 0.21 = 0.63 m</math> y-coordinate is <math>r_{y}(0.21)=r_{y_0}+\vec{v_{y_0}} \cdot 0.21-\tfrac{1}{2}\vec{g} \cdot 0.21^{2} = 10 + 3 \cdot 0.21 - \tfrac{1}{2} \cdot 9.8 \cdot 0.21 = 10.41 m</math>
==Links To Other Topics==
* 2-dimensional motion relies on vectors most of the time
* Most projectile motion problems are 2-dimensional
* Centripital motion problems are 2-dimensional as well
==See Also==
https://youtu.be/w3BhzYI6zXU?si=oivAjOifOPBi_5D4 - vectors and 2D motion
https://youtu.be/On5DpeGQ89I?si=7zqYvWx73W3HYwjG - 2D motion problems with solutions
==References==
https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/pages/week-1-kinematics/3-1-coordinate-system-and-position-vector-in-2d/
https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/pages/week-1-kinematics/3-4-projectile-motion/

Latest revision as of 22:00, 2 December 2025

Kseniia Suleimanova Fall 2025

The Main Idea

When objects move in 2-dimensional space, their motion can be described in [math]\displaystyle{ \hat{x},\ \hat{y} }[/math] coordinates. The motion for each of those axes can be viewed independently. Another approach is using vectors (i.e. coordinate (5, 3) can be seen as vector [math]\displaystyle{ \langle 5,\ 3 \rangle }[/math]).

Displacement and distance

Imagine we have 2 points and origin O: A = [math]\displaystyle{ \langle a,\ b \rangle }[/math], B = [math]\displaystyle{ \langle c,\ d \rangle }[/math]

A point particle moves from origin to point A and then to point B. The displacement can be viewed as adding those vectors: [math]\displaystyle{ \langle a,\ b \rangle + \langle c,\ d \rangle = \langle a + c,\ b + d \rangle }[/math].

The distance is the sum of magnitudes of those vectors: [math]\displaystyle{ \sqrt{a^{2} + b^{2}} + \sqrt{c^{2} + d^{2}} }[/math]

Moving with a constant velocity

Velocity is the derivative of the position vector. In 2-dimensional space velocity looks the following: [math]\displaystyle{ \vec{v} = \frac{\Delta \vec{r}}{\Delta t} = \left\langle \frac{\Delta x}{\Delta t},\frac{\Delta y}{\Delta t} \right\rangle }[/math], so moving for [math]\displaystyle{ t }[/math] seconds with velocity [math]\displaystyle{ \vec{r} }[/math] can be represented as [math]\displaystyle{ \vec{v} \cdot t = \left\langle \frac{\Delta x}{\Delta t} \cdot t,\frac{\Delta y}{\Delta t} \cdot t \right\rangle }[/math]

Moving with constant acceleration

In 2-dimensional space acceleration is [math]\displaystyle{ \vec{a} = \frac{\Delta \vec{v}}{\Delta t}= \left\langle \frac{\Delta v_x}{\Delta t},\frac{\Delta v_y}{\Delta t} \right\rangle }[/math].

A standard formula for position update is still applicable for vectors in 2-dimensional space: [math]\displaystyle{ \vec{r}(t)=\vec{r}_0+\vec{v}_0 t+\tfrac{1}{2}\vec{a}\,t^{2}=\langle x_0+v_{0x}t+\tfrac{1}{2}a_x t^{2},\ y_0+v_{0y}t+\tfrac{1}{2}a_y t^{2}\rangle }[/math]


Computational models

Projectile motion

https://www.glowscript.org/#/user/ksuleimanova/folder/MyPrograms/program/projectilemotiondemo - link to execute the code

Web VPython 3.2

scene.range = 10
scene.center = vector(5, 5, 0)
r = vector(0, 10, 0)
v = vector(3, 2, 0)
a = vector(0, -9.8, 0)

dt = 0.05

ball = sphere(pos=r, radius=0.2, color=color.red, make_trail=True)

gx = graph(title="Projectile Motion",
           xtitle="Time, s", ytitle="Position, m")

xplot = gcurve(color=color.blue, label="x(t)")
yplot = gcurve(color=color.green, label="y(t)")

t = 0

while r.y >= 0:
    rate(100)
    v = v + a * dt
    r = r + v * dt
    ball.pos = r
    xplot.plot(t, r.x)
    yplot.plot(t, r.y)
    t = t + dt

In this code the position is updated every small increment of time, using the position update formula for constant acceleration, involving velocity first, and then position:

v = v + a * dt
r = r + v * dt

Circular motion

In the circular velocity magnitude is constant, while its direction changes.

https://www.glowscript.org/#/user/ksuleimanova/folder/MyPrograms/program/circularmotion - link to execute the code


Web VPython 3.2


scene.width = 600
scene.height = 600
R = 5
omega = 1
dt = 0.05

particle = sphere(pos=vector(R,0,0), radius=0.5, color=color.red, make_trail=True)
arrow_velocity = arrow(pos=particle.pos, axis=vector(0,1,0), color=color.blue, shaftwidth=0.1)
arrow_accel = arrow(pos=particle.pos, axis=vector(0,1,0), color=color.green, shaftwidth=0.1)

t = 0

v_mag = 3
velocity = vector(0, v_mag, 0)
path = curve(color=color.yellow)

while t < 10:
    particle.pos = particle.pos + velocity*dt
    accel = - (velocity.mag**2 / R) * particle.pos.norm()
    velocity = velocity + accel*dt
    arrow_velocity.pos = particle.pos
    arrow_velocity.axis = velocity.norm()
    arrow_accel.pos = particle.pos
    arrow_accel.axis = accel.norm()
    path.append(pos=particle.pos)
    t += dt

This code also uses position update for each time increment.


Examples

Easy

Problem: A point particle starts at a point (0, 5)m on a flat surface an moves with a constant velocity [math]\displaystyle{ \langle 4,\ 1 \rangle m }[/math]. Find it's position after 5 seconds.


Solution: Intial position vector is [math]\displaystyle{ \langle 0,\ 5 \rangle m }[/math] As the velocity is constant, acceleration is 0. Insert all the data into the position update formula: [math]\displaystyle{ \vec{r}(t)=\vec{r}_0+\vec{v}_0 t+\tfrac{1}{2}\vec{a}\,t^{2}=\vec{r}_0+\vec{v}_0 t + 0 = \langle 0,\ 5 \rangle + \langle 4,\ 1 \rangle \cdot 5 = \langle 20,\ 10 \rangle m }[/math]

Medium

Problem: A bug on the table travels from point (1, 2)m to point (2, 1)m and then to (2, 2)m. The whole path takes 2 seconds. Find average speed and average velocity.

Solution: Displacement is [math]\displaystyle{ \langle 2,\ 2 \rangle - \langle 1,\ 2 \rangle = \langle 1,\ 0 \rangle m }[/math] Distance is the length of the path: [math]\displaystyle{ \sqrt{(2 - 1)^{2} + (1 - 2)^{2}} + \sqrt{(2 - 2)^{2} + (2 - 1)^{2}} = \sqrt{2} + \sqrt{1} = 2.41 m }[/math]

Average speed: [math]\displaystyle{ 2.41 / 2 = 1.21 m/s }[/math]

Average velocity: [math]\displaystyle{ \langle 1,\ 0 \rangle / 2 = \langle 0.5,\ 0 \rangle m/s }[/math]

Hard

Problem: The ball is thrown from the building with the height 10 meters. The initial velocity of the ball is [math]\displaystyle{ \langle 3,\ 2 \rangle \textit{m/s} }[/math] find the time and position when the ball reaches its maximum height.

Solution: This is the projectile motion problem in 2-dimensional space. The most convenient approach is to view vertical and horizontal motion independently. We know that horizontal component of the velocity stays the same, while [math]\displaystyle{ \vec{v}_{y} = \vec{v}_{y_{init}} - g t }[/math] - the ball moves with a constant acceleration. For the [math]\displaystyle{ \hat{y} }[/math] we can use the position update formula for constant acceleration [math]\displaystyle{ -g }[/math]: [math]\displaystyle{ r_{y}(t)=r_{y_0}+\vec{v_{y_0}} t-\tfrac{1}{2}\vec{g}\,t^{2} }[/math]. This is a parabola that has a maximum value. Insert numerical values and solve the equation: [math]\displaystyle{ r_{y}(t)=10+2 t-\tfrac{1}{2}\cdot 9.8 \cdot t^{2} }[/math]. Maximum value is achieved at [math]\displaystyle{ t = 0.21 s }[/math]. At [math]\displaystyle{ t_{max} = 0.21 s }[/math] x-coordinate is [math]\displaystyle{ r_{x_{init}} = \vec{v_x} \cdot t_{max} = 0 + 3 \cdot 0.21 = 0.63 m }[/math] y-coordinate is [math]\displaystyle{ r_{y}(0.21)=r_{y_0}+\vec{v_{y_0}} \cdot 0.21-\tfrac{1}{2}\vec{g} \cdot 0.21^{2} = 10 + 3 \cdot 0.21 - \tfrac{1}{2} \cdot 9.8 \cdot 0.21 = 10.41 m }[/math]

Links To Other Topics

  • 2-dimensional motion relies on vectors most of the time
  • Most projectile motion problems are 2-dimensional
  • Centripital motion problems are 2-dimensional as well


See Also

https://youtu.be/w3BhzYI6zXU?si=oivAjOifOPBi_5D4 - vectors and 2D motion

https://youtu.be/On5DpeGQ89I?si=7zqYvWx73W3HYwjG - 2D motion problems with solutions


References

https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/pages/week-1-kinematics/3-1-coordinate-system-and-position-vector-in-2d/

https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/pages/week-1-kinematics/3-4-projectile-motion/