Real Systems: Difference between revisions

From Physics Book
Jump to navigation Jump to search
mNo edit summary
 
(52 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Claimed by Nicole Harris 2017'''
This page describes real systems and how they can be used to model certain aspects of a system's motion.


==The Main Idea==
==The Main Idea==
[[File:RealPointParticleDifference.PNG|thumb|left]]
In [[Point Particle Systems]], the only change in energy is from translational kinetic energy because every force is assumed to act on the center of mass. Up until Week 10, we have been measuring change in energy of systems using the Point Particle Method. From what we learned in Week 10 though, we know that translational kinetic energy is not the only type of energy there can be a change in (see: [[Thermal Energy]] and [[Translational, Rotational and Vibrational Energy]]). In a real system, you must consider the point of application of each force when calculating the change in energy. Also in real systems, forces may also occur over a different displacement than the displacement of the center of mass. These two key differences lead to an interesting mathematical model that differs from that used for the Point Particle Method. Another distinguishing difference is that the point particle method looks at a system's center of mass and its movement. Real systems consider the change in distance with regard to the point of contact.


A real system is a system in which every part of the system is modeled separately, allowing for the internal behaviors of the system to be analyzed in addition to the system's motion through its environment.
In [[Point Particle Systems]], forces are analyzed as though they act directly on the system's center of mass, and only the translational kinetic energy of a system can change. Through week 9, we have modelled most bodies as point particles, as we have been primarily interested in their translational motion. However, we may now encounter problems where we want to analyze the internal behaviors of systems as well. For example, we may want to calculate a change in a system's [[Translational, Rotational and Vibrational Energy]], [[Potential Energy]], or [[Thermal Energy]]. In a real system, the point of application of each force must be considered. Furthermore, when calculating the work done by a force, the distance over which the force is applied is not the distance traveled by the system's center of mass, but rather the distance traveled by the force's point of contact. These two key differences lead to a mathematical model that can be more complicated than that of a point particle system, but yields insights about the internal behavior of the system.


===A Mathematical Model===
===A Mathematical Model===


The mathematical concepts used to analyze point particle systems depend on the system. Often, the [[Work/Energy|work-energy theorem]] is used. This section explains how to use the work-energy theorem for a point particle system because this is the concept that varies the most significantly from its application to point particle systems.


The mathematical equation used for Real Systems can vary depending on what his happening within and on the system. For the sake of flow with the WikiPhysicsBook, we will be analyzing real systems with the energy principle.
The work done on a real system should be calculated separately for each force acting on it because each force might be exerted over a different distance due to the geometry of the system. The work done on a real system by each force is defined as


[[File:EnergyPrinEqn.png]]>
<math>W = \int \vec{f} \cdot d \vec{r}</math>,


(We are ignoring Q for the sake of simplicity. It will not be taken into account in the subsequent examples despite the possible transfer of energy from temperature differences).
where <math>\vec{r}</math> is the position of the point on the system on which the force acts.
'''E''' is the total energy of the system and '''W''' is the net work done  from the surroundings on system. The major difference of a point particle system versus a real system is in the calculation of Work. In a point particle system, it is calculated by the net force dot product with the change in the position of the center of mass. However, Work in a real system is calculated by:


[[File:Workeq.PNG]]
Let us assume that the force acting on the system is constant, so that we can get rid of the integral, and that the force acts in the direction of the system's motion, so that we can replace the dot product with regular multiplication. This will be the case for most real system problems involving work. With these assumptions, the work done on a part of a real system by a force is given by


This means that the summation of the all the external forces dot product with the distance each force was applied amounts to the total change in energy of the real system. The change in the mathematical equation for Work between a point particle system and a real system is important because now different forms of energy may be taken into account. In a real system, the change in energy of a system can be given by:
<math> W = f * d </math>


[[File:Realenergyeq.PNG]]
where <math>F_{net}</math> is the magnitude of the net force acting on the particle and <math>d</math> is the distance over which the force is exerted. For real systems, that is the distance traveled by the point of contact of the force, which may not be the same as the distance traveled by the system's center of mass, depending on the movement of the systems' different parts. This contrasts with point particle systems, where the distance over which the force is exerted is simply the displacement of the system's center of mass.


Where,
The work-energy theorem states that work done on a system increases that system's energy. For real systems, this is the system's total energy. Since each force's work must be found separately in a real system, remember to sum the values of the work done by the different forces acting on the system.
total change in internal energy ('''U''') is given by:


[[File:Utotaleq.PNG]]
In other words, for a real system,


total change in kinetic energy ('''K''') is given by:
<math> \Delta E = \sum_i f_i * d_i </math>.


[[File:Ktoteq.PNG]]
The equation above is the basis for answering work/energy questions using real systems. It is important to remember that when modeling a system as a real system, calculating the work done on the system as described above finds <b>all</b> of the work done on the system- both translational kinetic energy and internal types of energy.


and change in Miscellaneous Energy is given by:
===A Computational Model===


[[File:Emisceq.PNG]]
Most computer simulations treat systems as real systems, modeling each part of a system separately. This is because [[Iterative Prediction]] makes keeping track of each part of the system separately easy even when it might be difficult to do so analytically. The last example on the [[Point Particle Systems]] page describes a system in which two masses are connected by a spring and one of them is pulled by a force. Consider the following simulation of the system:


[https://www.glowscript.org/#/user/YorickAndeweg/folder/PhysicsBookFolder/program/TwoMassSystem Two mass system simulation]


===A Computational Model===
If you click "view source" on the top left corner, you will see that the process of iterative prediction is performed separately for each of the two masses- they each have their own position vectors, and the forces acting on each are calculated. There is no need to treat them as a single particle and thereby lose information about their internal behavior- in this case, their oscillations.


==Examples==
==Examples==


In order to better display the difference of Real Systems from [[Point Particle Systems]], the examples done here will be the same examples done from [[Point Particle Systems]].
Some of the examples on the [[Point Particle Systems]] page can also be analyzed as real systems. Modeling each system as a real system makes the math more complicated but allows us to calculate the internal energies of the systems. Let us look at each example from the point particle systems page. (If you haven't already looked at them on the point particle systems page, do that first.)
 
===Jumper Model (Simple)===
===1.===
'''
 
'''Problem:''' You jump up so that your center of mass has moved a distance '''h'''. How much chemical energy did you expend?
A 60kg person jumps straight up in the air from a crouching position. From the time the person begins to push off of the ground to the time their feet leave the ground, their center of mass moves up 2m, and the normal force between the ground and the person's feet has a constant magnitude of twice the person's weight. Find the velocity of the jumper at the moment their feet leave the ground. Use 10m/s2 for g.
 
In this problem, the internal energy of the person does not change, so modeling the jumper as a real system offers few advantages. In fact, it makes it difficult to take an energy approach to answer the question, since when the person is modeled as a real system, the point of contact of the normal force does not move and so does not do work. Instead, forces in the person's legs do work, but the amount of work they do is difficult to calculate since different parts of the legs move different amounts. This problem is best analyzed as a point particle system.
 
===2.===
 
A giant 20kg yo-yo floats at rest in space. Its string (whose mass is negligible compared to the mass of the yo-yo) is pulled with a constant force of 8N. What is the speed of the yo-yo when it has travelled 5m?
 
[[File:Pointparticlesystemsyoyo.png]]
 
This problem can be analyzed as a real system, although it requires knowledge of rotational physics and is more difficult than treating it like a point particle.
 
The work done on the yo-yo is no longer simply 40Nm because the point of the force's application travels faster than the yo-yo's center of mass due to the yo-yo's rotation. It makes sense that the work done on the real yo-yo is greater than the work we found when treating it as a point particle because this work includes the increase in its rotational kinetic energy as well as the increase in its translational kinetic energy Let us find the distance over which the force is exerted in the real system.
 
Because the force applies a constant torque, the yo-yo undergoes constant angular acceleration <math>\alpha</math>. Let us say it takes <math>t_1</math> seconds for the yo-yo to travel the 5m. The average angular velocity of the yo-yo over that time period is
 
<math>\omega_{avg} = \frac{1}{2} \alpha t_1</math>.
 
This means that the distance traveled by the point of contact between the yo-yo and the string due to the yo-yo's rotation during the <math>t_1</math>-second interval is given by
 
<math>d_{rot} = \frac{1}{2} \alpha {t_1}^2 r</math>,


From the Point Particle System analysis, we know that  [[File:Jumpktrans.PNG]] and [[File:Fnetjump.PNG]].
where r is the radius of the yo-yo (the radius of the string wrapping around it, not the radius of its outer rim).


System: Person  Surroundings: Earth+Floor
The total work done on the yo-yo is given by


Initial State: Crouched down
<math>W = f * (d_{trans} + d_{rot})</math> (<math>d_{trans}</math> is the 5m traveled by the yo-yo's center of mass and <math>d_{rot}</math>) is the distance traveled by the edge of the yo-yo due to its rotation, found above.)


Final State: Extended and moving with speed v
<math>W = f * (d_{trans} + \frac{1}{2} \alpha {t_1}^2 r)</math>.


Let us manipulate this expression. Let us start by distributing out the force at the beginning:


[[File:Jumpsteps.PNG]]
<math>W = f * d_{trans} + f * \frac{1}{2} \alpha {t_1}^2 r</math>.


Assuming negligent change in thermal energy and relative kinetic energy, the change in thermal energy is approximately equal to the normal force multiplied by height.
The second term has both f and r as factors. Since the product of these two is the torque exerted by the force, we can replace <math>f*r</math> with <math>T</math> for torque:


===Yo-Yo (Middling)===
<math>W = f * d_{trans} + \frac{1}{2} \alpha {t_1}^2 T</math>.


[[File:Simple.png|650px]][http://www.example.com link title](Chabay)
Next, since <math>T = I\alpha</math> for fixed-plane rotations, we can replace <math>T</math> with <math>I\alpha</math>, where <math>I</math> is the moment of inertia of the yo-yo:


<math>W = f * d_{trans} + \frac{1}{2} \alpha^2 {t_1}^2 I</math>.


Finally, we can replace the product <math>\alpha * t_1</math> with <math>\omega_1</math>, the angular velocity of the yo-yo when it reaches the 5m mark:


'''Step 1:''' Solve for translational kinetic energy using the Point Particle System
<math>W = f * d_{trans} + \frac{1}{2} I {\omega_1}^2</math>.


(The equation for translational kinetic energy here is different than that in [[Point Particle Systems]], so the derivation has been provided.)
This expression is the amount of work done on the yo-yo, and since its initial energy of the yo-yo is 0, this expression also gives the final total energy of the yo-yo. Some of it is translational kinetic energy, and some of it is rotational kinetic energy. We recognize the expression <math>\frac{1}{2} I {\omega_1}^2</math> as the final rotational kinetic energy of the yo-yo, so that leaves <math>f * d_{trans}</math> as the final translational kinetic energy of the yo-yo. This is 8 * 5 = 40 Joules, which is the same value for the final translational kinetic energy of the yo-yo that we got by analyzing the yo-yo as a point particle on the point particle systems page. The yo-yo's translational speed can be easily calculated from this value.


[[File:Middling.png|650px]]
As you can see, we were able to save a lot of work by treating the yo-yo as a point particle system.


[[File:Simple Part Two.png|650px]]
===3.===


A 50kg metal sphere is suspended in the inside of a large cubic box of negligible mass by six rubber bands- one attaching the sphere to each face of the box. The box and the sphere are initially at rest. A 200N rightward force is applied to the side of the box, causing it to accelerate. At time <math>t_1</math>, the box has been displaced by 10m to the right. At this time, the sphere is no longer exactly in the center of the box; it is 1m to the left of the center of the box due to its inertia. What is the speed of the sphere at time <math>t_1</math>?


'''Step Two:''' Solve for rotational kinetic energy using a Real System
[[File:Pointparticlesystemspherebox.png]]


[[File:Difficult.png]]
Analyzing this system as a real system allows us to see that 2000Nm of work was exerted on the system rather than the 1800nM found using a point particle system. This is because the point of the force's application is on the box, which traveled all 10m. The 1800J found using the point particle system is the translational kinetic energy of the sphere, and the remaining 200J was an increase in the potential energy of the rubber bands, which became stretched when the sphere was displaced by 1m. This energy may become vibrational as the light box jiggles around the sphere.


Here is where the true difference between Real and Point Particle Systems can be seen. In the Point Particle system, there is no value to account for the change of rotational kinetic energy from the work done the hand. By changing the Work equation to [[File:Workeq.PNG]] rather than [[File:Wppeq.PNG]], the rotational kinetic energy can now be found.
===4.===


===Spring In a Box (Difficult)===
A uniform disk of mass <math>M</math> starts at rest and rolls without slipping down a ramp. The plane of the ramp makes an angle of <Math>\Theta</Math> with the horizontal. The force of [[Static Friction]] acting on the bottom of such a disk, causing it to rotate, always has a magnitude of 1/3 the force acting to move the disk down the ramp. What is the translational speed of the disk after it has traveled a distance of <math>d</math> diagonally down the ramp?


Suppose a thin box contains a ball of clay with the mass '''M''' connected to a relaxed spring with a stiffness '''ks'''. The masses of the box and the spring are negligible. It is initally at rest, and then a constant force of '''F'''. The box moves a distance '''b''' and the spring stretches a distance '''s''' so that the clay sticks to the box. What is the change in thermal energy of the clay after colliding with the wall of the box?
[[File:Pointparticlesystemsramp.png]]


Using a point particle system, we calculated the work done by the net force acting on the particle. The net force had a magnitude of


[[File:Springbox.png]]
<math>f_{net} = \frac{2}{3} Mg \sin \Theta</math>.


From the analysis of the [[Point Particle Systems]] of the Spring in a Box, we know that [[File:Ktransbox.PNG]]. Because the system is a spring, we also know that [[File:Uspring.PNG]].
However, when treating the disk as a real system, the work done by the friction force and by the gravitational force need to be calculated separately because the forces act on different parts of the system and are exerted over different distances. The work done by the gravitational force is


[[File:Bssol.PNG]]
<math>W = Mg \sin \Theta * d</math>,


Assuming there is no relative kinetic energy (none based on diagram) and no change in chemical energy (there is no change in substance), the change in thermal energy of the clay can be found. Finding the change in thermal energy is important because you can determine whether there was enough energy to change the temperature of the clay or whether there is enough energy given off by the clay to change the temperature of a surrounding substance by a degree. Problems like this show the importance of analyzing real systems versus point particle systems.
since the gravitational force force acts on the center of the disk's mass, which travels a distance of d.


==Connectedness==
The work done by the friction force, however, is actually 0. This is because the friction force is applied to the point on the edge of the disk: the point that is in contact with the ramp. Since the disk rolls instead of slides and is affected by [[Static Friction]] with the ramp, this point is not moving relative to the ramp, and so the friction force is exerted over a distance of 0.
'''How is this topic connected to something that you are interested in?'''


This topic interests me because from one single system you can mathematically determine the other forms of energy that can occur in various physical interaction. From the other forms of energy, you can determine whether there is enough energy to maybe change the temperature of another substance via thermal energy or even change the substance that is in the system given a big enough change in chemical energy.
When modeling the disk as a real system, therefore, the final energy of the disk is  


<math>E = Mg \sin \Theta * d</math>.


'''How is it connected to your major?'''
This is higher than the energy found when we treated the disk like a point particle system because this energy includes both translational kinetic energy and the rotational kinetic energy of the disk.


As a chemical engineering major, the application of Real Systems is largely used for the majority of mathematics in my major dealing with energy balances. From only analyzing a system from a point particle method, one would only be able to find the change in the translational kinetic energy. In my major, it is very important to consider the entire system in order to find important values such as the change in thermal and kinetic energy because these values are often associated with the amount of work and heat produced in many chemical engineering processes.
Let us find (without looking at our answer from the point particle analysis) how much of this energy is rotational and how much is translational. Let us say that the final translational speed of the disk is <math>v</math>.


In that case, the translational kinetic energy of the disk is given by


'''Is there an interesting industrial application?'''
<math>KE_{trans} = \frac{1}{2}Mv^2</math>


There is an absolute overload of interesting industrial applications for the analysis of real systems. In fact, the analysis of real systems in terms of energy balances is the entirety of what I've done in my chemical engineering classes thus far (I am currently a second year). There are many interesting (depending on your taste) uses of the real system analysis on a multitude of different turbines and chemical reactors.
and the rotational kinetic energy of the disk is given by


<math>KE_{rot} = \frac{1}{2}I \omega^2</math>
<math>KE_{rot} = \frac{1}{2} \frac{1}{2}MR^2 (\frac{v}{R})^2</math> where R is the radius of the disk.
<math>KE_{rot} = \frac{1}{4} M v^2</math>
<math>KE_{rot} = \frac{1}{2}KE_{trans}</math>, so 2/3 of the disk's kinetic energy is translational and 1/3 is rotational.
This means the translational kinetic energy of the disk is
<math>E = \frac{2}{3} Mg \sin \Theta * d</math>.
This is the same value for the final translational kinetic energy of the disk that we got by analyzing the disk as a point particle on the point particle systems page. The disk's translational speed can be easily calculated from this value.
===5.===
A pair of 10kg masses are connected by a massless spring of unknown spring constant. They begin at rest at the spring's equilibrium length. A 30N rightward force is applied to the mass on the right for 4s. At the end of the 4 second period, the force ceases to act and the mass on the right has traveled 20m. The system continues to travel to the right, and the distance between the two masses oscillates sinusoidally. How much vibrational kinetic energy does the system have? (Vibrational kinetic energy is the energy of the mass' oscillatory movement, as opposed to their translational kinetic energy, which is the energy of the rightward movement of their center of mass.)
[[File:Pointparticlesystemtwomass.png]]
[https://www.glowscript.org/#/user/YorickAndeweg/folder/PhysicsBookFolder/program/twomasssystem Here is a simulation of the system to help you visualize it.]
By modeling the system as both a real system and a point particle system (which was done on the point particle systems page), we are able to answer the question. Finding more detailed information about the oscillations, such as their frequency, amplitude, and phase, is much more difficult and requires an entirely real model. A difficult-to-solve system of differential equations would have to be devised, describing the accelerations of the masses in terms of their positions.


==See also==
==See also==


===Further reading===
*[[Point Particle Systems]]
http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes:pp_vs_real
*[[Work/Energy]]
*[[Translational, Rotational and Vibrational Energy]]


===External links===
===External links===
[http://www.physicsbook.gatech.edu/Point_Particle_Systems]


A helpful page for additional info: http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes:pp_vs_real
A helpful video lecture: https://www.youtube.com/watch?v=T780lL5FlLg&index=41&list=PL9HgJKLOnKxedh-yIp7FDzUTwZeTeoR-Y


==References==
==References==


Chabay, Ruth W., and Bruce A. Sherwood. "9." <i>Matter &amp; Interactions</i>. N.p.: n.p., n.d. N. pag. Print.
Chabay, Ruth W., and Bruce A. Sherwood. "9." <i>Matter &amp; Interactions</i>. N.p.: n.p., n.d. N. pag. Print.
Wiki Commons Picture
--[[User:Nfortingo3|Nfortingo3]]([[User talk:Nfortingo3|talk]]) 19:26, 28 November 2015 (EST)


[[Category:Energy]]
[[Category:Energy]]

Latest revision as of 17:37, 9 April 2022

This page describes real systems and how they can be used to model certain aspects of a system's motion.

The Main Idea

A real system is a system in which every part of the system is modeled separately, allowing for the internal behaviors of the system to be analyzed in addition to the system's motion through its environment.

In Point Particle Systems, forces are analyzed as though they act directly on the system's center of mass, and only the translational kinetic energy of a system can change. Through week 9, we have modelled most bodies as point particles, as we have been primarily interested in their translational motion. However, we may now encounter problems where we want to analyze the internal behaviors of systems as well. For example, we may want to calculate a change in a system's Translational, Rotational and Vibrational Energy, Potential Energy, or Thermal Energy. In a real system, the point of application of each force must be considered. Furthermore, when calculating the work done by a force, the distance over which the force is applied is not the distance traveled by the system's center of mass, but rather the distance traveled by the force's point of contact. These two key differences lead to a mathematical model that can be more complicated than that of a point particle system, but yields insights about the internal behavior of the system.

A Mathematical Model

The mathematical concepts used to analyze point particle systems depend on the system. Often, the work-energy theorem is used. This section explains how to use the work-energy theorem for a point particle system because this is the concept that varies the most significantly from its application to point particle systems.

The work done on a real system should be calculated separately for each force acting on it because each force might be exerted over a different distance due to the geometry of the system. The work done on a real system by each force is defined as

[math]\displaystyle{ W = \int \vec{f} \cdot d \vec{r} }[/math],

where [math]\displaystyle{ \vec{r} }[/math] is the position of the point on the system on which the force acts.

Let us assume that the force acting on the system is constant, so that we can get rid of the integral, and that the force acts in the direction of the system's motion, so that we can replace the dot product with regular multiplication. This will be the case for most real system problems involving work. With these assumptions, the work done on a part of a real system by a force is given by

[math]\displaystyle{ W = f * d }[/math]

where [math]\displaystyle{ F_{net} }[/math] is the magnitude of the net force acting on the particle and [math]\displaystyle{ d }[/math] is the distance over which the force is exerted. For real systems, that is the distance traveled by the point of contact of the force, which may not be the same as the distance traveled by the system's center of mass, depending on the movement of the systems' different parts. This contrasts with point particle systems, where the distance over which the force is exerted is simply the displacement of the system's center of mass.

The work-energy theorem states that work done on a system increases that system's energy. For real systems, this is the system's total energy. Since each force's work must be found separately in a real system, remember to sum the values of the work done by the different forces acting on the system.

In other words, for a real system,

[math]\displaystyle{ \Delta E = \sum_i f_i * d_i }[/math].

The equation above is the basis for answering work/energy questions using real systems. It is important to remember that when modeling a system as a real system, calculating the work done on the system as described above finds all of the work done on the system- both translational kinetic energy and internal types of energy.

A Computational Model

Most computer simulations treat systems as real systems, modeling each part of a system separately. This is because Iterative Prediction makes keeping track of each part of the system separately easy even when it might be difficult to do so analytically. The last example on the Point Particle Systems page describes a system in which two masses are connected by a spring and one of them is pulled by a force. Consider the following simulation of the system:

Two mass system simulation

If you click "view source" on the top left corner, you will see that the process of iterative prediction is performed separately for each of the two masses- they each have their own position vectors, and the forces acting on each are calculated. There is no need to treat them as a single particle and thereby lose information about their internal behavior- in this case, their oscillations.

Examples

Some of the examples on the Point Particle Systems page can also be analyzed as real systems. Modeling each system as a real system makes the math more complicated but allows us to calculate the internal energies of the systems. Let us look at each example from the point particle systems page. (If you haven't already looked at them on the point particle systems page, do that first.)

1.

A 60kg person jumps straight up in the air from a crouching position. From the time the person begins to push off of the ground to the time their feet leave the ground, their center of mass moves up 2m, and the normal force between the ground and the person's feet has a constant magnitude of twice the person's weight. Find the velocity of the jumper at the moment their feet leave the ground. Use 10m/s2 for g.

In this problem, the internal energy of the person does not change, so modeling the jumper as a real system offers few advantages. In fact, it makes it difficult to take an energy approach to answer the question, since when the person is modeled as a real system, the point of contact of the normal force does not move and so does not do work. Instead, forces in the person's legs do work, but the amount of work they do is difficult to calculate since different parts of the legs move different amounts. This problem is best analyzed as a point particle system.

2.

A giant 20kg yo-yo floats at rest in space. Its string (whose mass is negligible compared to the mass of the yo-yo) is pulled with a constant force of 8N. What is the speed of the yo-yo when it has travelled 5m?

This problem can be analyzed as a real system, although it requires knowledge of rotational physics and is more difficult than treating it like a point particle.

The work done on the yo-yo is no longer simply 40Nm because the point of the force's application travels faster than the yo-yo's center of mass due to the yo-yo's rotation. It makes sense that the work done on the real yo-yo is greater than the work we found when treating it as a point particle because this work includes the increase in its rotational kinetic energy as well as the increase in its translational kinetic energy Let us find the distance over which the force is exerted in the real system.

Because the force applies a constant torque, the yo-yo undergoes constant angular acceleration [math]\displaystyle{ \alpha }[/math]. Let us say it takes [math]\displaystyle{ t_1 }[/math] seconds for the yo-yo to travel the 5m. The average angular velocity of the yo-yo over that time period is

[math]\displaystyle{ \omega_{avg} = \frac{1}{2} \alpha t_1 }[/math].

This means that the distance traveled by the point of contact between the yo-yo and the string due to the yo-yo's rotation during the [math]\displaystyle{ t_1 }[/math]-second interval is given by

[math]\displaystyle{ d_{rot} = \frac{1}{2} \alpha {t_1}^2 r }[/math],

where r is the radius of the yo-yo (the radius of the string wrapping around it, not the radius of its outer rim).

The total work done on the yo-yo is given by

[math]\displaystyle{ W = f * (d_{trans} + d_{rot}) }[/math] ([math]\displaystyle{ d_{trans} }[/math] is the 5m traveled by the yo-yo's center of mass and [math]\displaystyle{ d_{rot} }[/math]) is the distance traveled by the edge of the yo-yo due to its rotation, found above.)

[math]\displaystyle{ W = f * (d_{trans} + \frac{1}{2} \alpha {t_1}^2 r) }[/math].

Let us manipulate this expression. Let us start by distributing out the force at the beginning:

[math]\displaystyle{ W = f * d_{trans} + f * \frac{1}{2} \alpha {t_1}^2 r }[/math].

The second term has both f and r as factors. Since the product of these two is the torque exerted by the force, we can replace [math]\displaystyle{ f*r }[/math] with [math]\displaystyle{ T }[/math] for torque:

[math]\displaystyle{ W = f * d_{trans} + \frac{1}{2} \alpha {t_1}^2 T }[/math].

Next, since [math]\displaystyle{ T = I\alpha }[/math] for fixed-plane rotations, we can replace [math]\displaystyle{ T }[/math] with [math]\displaystyle{ I\alpha }[/math], where [math]\displaystyle{ I }[/math] is the moment of inertia of the yo-yo:

[math]\displaystyle{ W = f * d_{trans} + \frac{1}{2} \alpha^2 {t_1}^2 I }[/math].

Finally, we can replace the product [math]\displaystyle{ \alpha * t_1 }[/math] with [math]\displaystyle{ \omega_1 }[/math], the angular velocity of the yo-yo when it reaches the 5m mark:

[math]\displaystyle{ W = f * d_{trans} + \frac{1}{2} I {\omega_1}^2 }[/math].

This expression is the amount of work done on the yo-yo, and since its initial energy of the yo-yo is 0, this expression also gives the final total energy of the yo-yo. Some of it is translational kinetic energy, and some of it is rotational kinetic energy. We recognize the expression [math]\displaystyle{ \frac{1}{2} I {\omega_1}^2 }[/math] as the final rotational kinetic energy of the yo-yo, so that leaves [math]\displaystyle{ f * d_{trans} }[/math] as the final translational kinetic energy of the yo-yo. This is 8 * 5 = 40 Joules, which is the same value for the final translational kinetic energy of the yo-yo that we got by analyzing the yo-yo as a point particle on the point particle systems page. The yo-yo's translational speed can be easily calculated from this value.

As you can see, we were able to save a lot of work by treating the yo-yo as a point particle system.

3.

A 50kg metal sphere is suspended in the inside of a large cubic box of negligible mass by six rubber bands- one attaching the sphere to each face of the box. The box and the sphere are initially at rest. A 200N rightward force is applied to the side of the box, causing it to accelerate. At time [math]\displaystyle{ t_1 }[/math], the box has been displaced by 10m to the right. At this time, the sphere is no longer exactly in the center of the box; it is 1m to the left of the center of the box due to its inertia. What is the speed of the sphere at time [math]\displaystyle{ t_1 }[/math]?

Analyzing this system as a real system allows us to see that 2000Nm of work was exerted on the system rather than the 1800nM found using a point particle system. This is because the point of the force's application is on the box, which traveled all 10m. The 1800J found using the point particle system is the translational kinetic energy of the sphere, and the remaining 200J was an increase in the potential energy of the rubber bands, which became stretched when the sphere was displaced by 1m. This energy may become vibrational as the light box jiggles around the sphere.

4.

A uniform disk of mass [math]\displaystyle{ M }[/math] starts at rest and rolls without slipping down a ramp. The plane of the ramp makes an angle of [math]\displaystyle{ \Theta }[/math] with the horizontal. The force of Static Friction acting on the bottom of such a disk, causing it to rotate, always has a magnitude of 1/3 the force acting to move the disk down the ramp. What is the translational speed of the disk after it has traveled a distance of [math]\displaystyle{ d }[/math] diagonally down the ramp?

Using a point particle system, we calculated the work done by the net force acting on the particle. The net force had a magnitude of

[math]\displaystyle{ f_{net} = \frac{2}{3} Mg \sin \Theta }[/math].

However, when treating the disk as a real system, the work done by the friction force and by the gravitational force need to be calculated separately because the forces act on different parts of the system and are exerted over different distances. The work done by the gravitational force is

[math]\displaystyle{ W = Mg \sin \Theta * d }[/math],

since the gravitational force force acts on the center of the disk's mass, which travels a distance of d.

The work done by the friction force, however, is actually 0. This is because the friction force is applied to the point on the edge of the disk: the point that is in contact with the ramp. Since the disk rolls instead of slides and is affected by Static Friction with the ramp, this point is not moving relative to the ramp, and so the friction force is exerted over a distance of 0.

When modeling the disk as a real system, therefore, the final energy of the disk is

[math]\displaystyle{ E = Mg \sin \Theta * d }[/math].

This is higher than the energy found when we treated the disk like a point particle system because this energy includes both translational kinetic energy and the rotational kinetic energy of the disk.

Let us find (without looking at our answer from the point particle analysis) how much of this energy is rotational and how much is translational. Let us say that the final translational speed of the disk is [math]\displaystyle{ v }[/math].

In that case, the translational kinetic energy of the disk is given by

[math]\displaystyle{ KE_{trans} = \frac{1}{2}Mv^2 }[/math]

and the rotational kinetic energy of the disk is given by

[math]\displaystyle{ KE_{rot} = \frac{1}{2}I \omega^2 }[/math]

[math]\displaystyle{ KE_{rot} = \frac{1}{2} \frac{1}{2}MR^2 (\frac{v}{R})^2 }[/math] where R is the radius of the disk.

[math]\displaystyle{ KE_{rot} = \frac{1}{4} M v^2 }[/math]

[math]\displaystyle{ KE_{rot} = \frac{1}{2}KE_{trans} }[/math], so 2/3 of the disk's kinetic energy is translational and 1/3 is rotational.

This means the translational kinetic energy of the disk is

[math]\displaystyle{ E = \frac{2}{3} Mg \sin \Theta * d }[/math].

This is the same value for the final translational kinetic energy of the disk that we got by analyzing the disk as a point particle on the point particle systems page. The disk's translational speed can be easily calculated from this value.

5.

A pair of 10kg masses are connected by a massless spring of unknown spring constant. They begin at rest at the spring's equilibrium length. A 30N rightward force is applied to the mass on the right for 4s. At the end of the 4 second period, the force ceases to act and the mass on the right has traveled 20m. The system continues to travel to the right, and the distance between the two masses oscillates sinusoidally. How much vibrational kinetic energy does the system have? (Vibrational kinetic energy is the energy of the mass' oscillatory movement, as opposed to their translational kinetic energy, which is the energy of the rightward movement of their center of mass.)

Here is a simulation of the system to help you visualize it.

By modeling the system as both a real system and a point particle system (which was done on the point particle systems page), we are able to answer the question. Finding more detailed information about the oscillations, such as their frequency, amplitude, and phase, is much more difficult and requires an entirely real model. A difficult-to-solve system of differential equations would have to be devised, describing the accelerations of the masses in terms of their positions.

See also

External links

A helpful page for additional info: http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes:pp_vs_real

A helpful video lecture: https://www.youtube.com/watch?v=T780lL5FlLg&index=41&list=PL9HgJKLOnKxedh-yIp7FDzUTwZeTeoR-Y

References

Chabay, Ruth W., and Bruce A. Sherwood. "9." Matter & Interactions. N.p.: n.p., n.d. N. pag. Print.