Impulse Momentum: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Created page with "==Impulse Momentum== This topic focuses on the impulse of systems during collisions. Claimed by thossain6 ===Zeroth Law=== The zeroth law states that if two systems are at t...")
 
(Replaced content with "This page was redundant and has been removed. Its information has been incorporated into the page below: *Impulse and Momentum")
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Impulse Momentum==
This page was redundant and has been removed. Its information has been incorporated into the page below:
 
*[[Impulse and Momentum]]
This topic focuses on the impulse of systems during collisions. Claimed by thossain6
===Zeroth Law===
 
The zeroth law states that if two systems are at thermal equilibrium at the same time as a third system, then all of the systems are at equilibrium with each other.  If systems A and C are in thermal equilibrium with B, then system A and C are also in thermal equilibrium with each other.  There are underlying ideas of heat that are also important.  The most prominent one is that all heat is of the same kind.  As long as the systems are at thermal equilibrium, every unit of internal energy that passes from one system to the other is balanced by the same amount of energy passing back.  This also applies when the two systems or objects have different atomic masses or material. 
 
====A Mathematical Model====
 
If A = B and A = C, then B = C
A = B = C
 
====A Computational Model====
 
How do we visualize or predict using this topic. Consider embedding some vpython code here [https://trinket.io/glowscript/31d0f9ad9e Teach hands-on with GlowScript]
 
===First Law===
 
The first law of thermodynamics defines the internal energy (E) as equal to the difference between heat transfer (Q) ''into'' a system and work (W) ''done by'' the system.  Heat removed from a system would be given a negative sign and heat applied to the system would be given a positive sign. Internal energy can be converted into other types of energy because it acts like potential energy.  Heat and work, however, cannot be stored or conserved independently because they depend on the process.  This allows for many different possible states of a system to exist.  There can be a process known as the adiabatic process in which there is no heat transfer.  This occurs when a system is full insulated from the outside environment.  The implementation of this law also brings about another useful state variable, '''enthalpy'''. 
 
====A Mathematical Model====
 
E2 - E1 = Q - W
 
==Examples==
 
Be sure to show all steps in your solution and include diagrams whenever possible
 
===Simple===
===Middling===
===Difficult===
 
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is it connected to your major?
#Is there an interesting industrial application?
 
==History==
 
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
 
== See also ==
 
Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
 
===Further reading===
 
Books, Articles or other print media on this topic
 
===External links===
 
Internet resources on this topic
 
==References==
 
https://www.grc.nasa.gov/www/k-12/airplane/thermo0.html
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thereq.html
 
[[Category:Which Category did you place this in?]]

Latest revision as of 13:37, 23 May 2019

This page was redundant and has been removed. Its information has been incorporated into the page below: