Path Independence: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
 
(78 intermediate revisions by 7 users not shown)
Line 1: Line 1:
==Thermodynamics==
Work of Adway Dhillon (adhillon6)


This topics focuses on energy work of a system but it can only deal with a large scale response to heat in a system.  '''Thermodynamics''' is the study of the work, heat and energy of a system.  The smaller scale gas interactions can explained using the kinetic theory of gases.  There are three fundamental laws that go along with the topic of thermodynamics.  They are the zeroth law, the first law, and the second law.  These laws help us understand predict the the operation of the physical system.  In order to understand the laws, you must first understand thermal equilibrium.  [[Thermal equilibrium]] is reached when a object that is at a higher temperature is in contact with an object that is at a lower temperature and the first object transfers heat to the latter object until they approach the same temperature and maintain that temperature constantly.  It is also important to note that any thermodynamic system in thermal equilibrium possesses internal energy. 
Short Description of Topic


===Zeroth Law===
==The Main Idea==


The zeroth law states that if two systems are at thermal equilibrium at the same time as a third system, then all of the systems are at equilibrium with each other. If systems A and C are in thermal equilibrium with B, then system A and C are also in thermal equilibrium with each other. There are underlying ideas of heat that are also important.  The most prominent one is that all heat is of the same kind.  As long as the systems are at thermal equilibrium, every unit of internal energy that passes from one system to the other is balanced by the same amount of energy passing back. This also applies when the two systems or objects have different atomic masses or material.
This page is about an apparatus called the Cyclotron. This device is used to accelerate charged particles (like protons, neutrons, alpha particles, etc.) and ions to high energies. It uses a combination of strong magnetic and electric fields to accelerate the charged particles. The two fields (electric and magnetic) are perpendicular to each other, hence very aptly name "crossed fields". When the charged particle is accelerated by the cyclotron, the frequency of tis revolution in the two semi-secular plates (also called the "Ds") is independent of its energy. This is an important fact in the working of the device, as we will subsequently study in this lesson.


====A Mathematical Model====


If A = B and A = C, then B = C
PRINCIPLE:<br>
A = B = C
The working of the cyclotron is based on the fact that a positively charged particle can be accelerated to a sufficiently high energy with the help of smaller values of oscillating electric field by making it cross the same electric field time and again, with the help of a stringer magnetic field.


====A Computational Model====


How do we visualize or predict using this topic. Consider embedding some vpython code here [https://trinket.io/glowscript/31d0f9ad9e Teach hands-on with GlowScript]
CONSTRUCTION:<br>
A cyclotron device consists of two D-shaped hollow evacuated metal chambers (say D1 and D2) called the dees. These dees are placed horizontally with their diametric edges parallel and slightly separated from each other. The dees are connected to a high frequency oscillator which can produce a potential difference of the order of 10^4 volts at a frequency of about 10^7 hertz. The two dees are enclosed in an evacuated steel box and are well insulated from it. The box is placed inn a string magnetic field produced by two pole pieces of an electromagnets N,S. The magnetic field is perpendicular to the plane of the dees. At the centre of the device, P is a place of ionic source or positively charged (Check the diagram).


===First Law===
WORKING AND THEORY:<br>
The positive ion to be accelerated is produced at P. Suppose, at that instant D1 is at negative potential and D2 is at positive potential. Therefore, the ion will be accelerated towards D1. On reaching inside D1, the ion will be in a field free space (as the two dees are hollow and metallic). Hence it moves with a constant speed in D1, say v. But due to a perpendicular magnetic field of strength B, the ion will describe a circular path of radius r (say) in D1.


The first law of thermodynamics defines the internal energy (E) as equal to the difference between heat transfer (Q) ''into'' a system and work (W) ''done by'' the system. Heat removed from a system would be given a negative sign and heat applied to the system would be given a positive sign.  Internal energy can be converted into other types of energy because it acts like potential energy. Heat and work, however, cannot be stored or conserved independently because they depend on the process.  This allows for many different possible states of a system to exist. There can be a process known as the adiabatic process in which there is no heat transfer.  This occurs when a system is full insulated from the outside environment.  The implementation of this law also brings about another useful state variable, '''enthalpy'''.
Now in case the time taken by the positive ion to describe a semicircular path is equal to the time during which half cycle of the electric oscillator is completed, then as the ion arrives in the gap between the two dees, the polarity of the two dees is reversed, i.e. D1 becomes positive and D2 becomes negative. Then, the positive ion is accelerated towards D2 and it enters D2 with a greater speed, which remains constant in D2. The ion will describe a semicircular path of greater radius due to a perpendicular magnetic field and again will arrive in the gap between the two dees exactly at the instant, the polarity of the two dees is reversed. Thus, the positive ion will go on accelerating every time it comes into the gap between the dees and will go on describing a circular path of greater and greater radius with greater and greater speed and finally acquires a sufficiently high energy. The accelerated ops can be removed out of the dees from the window W, by applying at the elected field across the deflecting plates E and F (check the diagram).


====A Mathematical Model====


E2 - E1 = Q - W


==Second Law==
===A Mathematical Model===


The second law states that there is another useful variable of heat, entropy (S).  Entropy can be described as the disorder or chaos of a system, but in physics, we will just refer to it as another variable like enthalpy or temperature. For any given physical process, the combined entropy of a system and the environment remains a constant if the process can be reversed.  The second law also states that if the physical process is irreversible, the combined entropy of the system and the environment must increase. Therefore, the final entropy must be greater than the initial entropy. 
The charged particle describes a circular path of radius r (say) in D1, due to the perpendicular magnetic field B. Hence, the magnetic force experienced by the particle is balanced by the centripetal force on the particle due to its circular motion (in a circle of radius r). <br>This gives us the following expression:<br>
<math>Bqv = mv^2/r</math>


===Mathematical Models===
Here: m and q are the mass and the charge of the ion respectively. <br>


delta S = delta Q/T
Therefore:      <math>r = mv/Bq</math>
Sf = Si (reversible process)
Sf > Si (irreversible process)


===Examples===
MAXIMUM ENERGY OF POSITIVE ION:<br>
Let <math>v_0, r_o</math> = maximum velocity and maximum radius of the circular path followed by the positive ion in the cyclotron.


'''Reversible process''': Ideally forcing a flow through a constricted pipe, where there are no boundary layers. As the flow moves through the constriction, the pressure, volume and temperature change, but they return to their normal values once they hit the downstream.  This return to the variables' original values allows there to be no change in entropy.  It is often known as an isentropic process. 
Then: <math>mv_0^2/r_0 = Bqv_0    or    v_0 = Bqr_0/m</math>


'''Irreversible process''': When a hot object and cold object are put in contact with each other, eventually the heat from the hot object will transfer to the cold object and the two will reach the same temperature and stay constant at that temperature, reaching equilibrium. However, once those objects are separated, they will remain at that equilibrium temperature until something else acts upon it. The objects do not go back to their original temperatures so there is a change in entropy.
Therefore: <math>Max K.E. = 1/2 mv_0^2 = 1/2 m(Bqr_0/m)^2 = B^2q^2r_0^2/2m</math>
 
 
 
CYCLOTRON FREQUENCY:<br>
If T is the time period of oscillating electric field then:
<math>T = 2t = 2pim/Bq</math>
 
The cyclotron frequency is given by
 
 
What are the mathematical equations that allow us to model this topic.  For example <math>{\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}</math> where '''p''' is the momentum of the system and '''F''' is the net force from the surroundings.
 
===A Computational Model===
 
Go to the following link to have a look at the picture: http://i64.tinypic.com/mil0sz.jpg
 
 
==Examples==
The Large Hadron Collider (LHC) is the world's largest and most powerful particle collider, and its functioning is based on the same principle as a simple cyclotron. It is the largest, most complex experimental facility ever built, and the largest single machine in the world. It was built by the European Organization for Nuclear Research (CERN). The LHC's aim is to allow physicists to test the predictions of different theories of particle physics, high-energy physics and in particular, to further test the properties of the Higgs Boson.


==Connectedness==
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is this topic connected to something that you are interested in?
I have been closely monitoring and following the developments at the Large Hadron Collider at CERN. The device's functioning and the underlying principle it works on got me interested in this field. This led me to study more on cyclotrons and particle accelerators.
#How is it connected to your major?
#How is it connected to your major?
#Is there an interesting industrial application?
#Is there an interesting industrial application?
Line 47: Line 66:
==History==
==History==


Thermodynamics was brought up as a science in the 18th and 19th centuries.  However, it was first brought up by Galilei, who introduced the concept of temperature and invented the first thermometer. G. Black first introduced the word 'thermodynamics'.  Later, G. Wilke introduced another unit of measurement known as the calorie that measures heat.  The idea of thermodynamics was brought up by Nicolas Leonard Sadi Carnot.  He is often known as "the father of thermodynamics".  It all began with the development of the steam engine during the Industrial Revolution.  He devised an ideal cycle of operation. During his observations and experimentations, he had the incorrect notion that heat is conserved, however he was able to lay down theorems that led to the development of thermodynamics. In the 20th century, the science of thermodynamics became a conventional term and a basic division of physics. Thermodynamics dealt with the study of general properties of physical systems under equilibrium and the conditions necessary to obtain equilibrium.
The cyclotron was first developed by Lawrence and Livingston at the University of California, Berkeley. Lawrence, having worked extensively on electromagnets before, was behind much of the theoretical work. On the other hand, Livingstone was responsible for translating that to a tangible device. When the device was created, it was the strongest particle accelerator of its kind. This was true till another accelerator was constructed in Leningrad, at the Radium Institute.


== See also ==
== See also ==
Line 58: Line 77:


===External links===
===External links===
[http://www.wsj.com/articles/physicists-restart-souped-up-hadron-collider-1437948498/]
[http://www.theguardian.com/science/cern/]
[http://www.express.co.uk/news/world/565315/Scientists-at-Large-Hadron-Collider-hope-to-make-contact-with-PARALLEL-UNIVERSE-in-days/\


Internet resources on this topic


==References==
==References==


https://www.grc.nasa.gov/www/k-12/airplane/thermo0.html
Baldwin, Paul. "Scientists at Large Hadron Collider Hope to Make Contact with PARALLEL UNIVERSE in Days." N.p., n.d. Web. 05 Dec. 2015.
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thereq.html
 
https://www.grc.nasa.gov/www/k-12/airplane/thermo2.html
"Latest Experiment at Large Hadron Collider Reports First Results." MIT News. N.p., n.d. Web. 05 Dec. 2015.
http://www.phys.nthu.edu.tw/~thschang/notes/GP21.pdf
 
http://www.eoearth.org/view/article/153532/
"Large Hadron Collider Starts Doing Science Again." Scientific American. N.p., n.d. Web. 05 Dec. 2015.


[[Category:Which Category did you place this in?]]
[[Category:Which Category did you place this in?]]

Latest revision as of 22:44, 5 December 2015

Work of Adway Dhillon (adhillon6)

Short Description of Topic

The Main Idea

This page is about an apparatus called the Cyclotron. This device is used to accelerate charged particles (like protons, neutrons, alpha particles, etc.) and ions to high energies. It uses a combination of strong magnetic and electric fields to accelerate the charged particles. The two fields (electric and magnetic) are perpendicular to each other, hence very aptly name "crossed fields". When the charged particle is accelerated by the cyclotron, the frequency of tis revolution in the two semi-secular plates (also called the "Ds") is independent of its energy. This is an important fact in the working of the device, as we will subsequently study in this lesson.


PRINCIPLE:
The working of the cyclotron is based on the fact that a positively charged particle can be accelerated to a sufficiently high energy with the help of smaller values of oscillating electric field by making it cross the same electric field time and again, with the help of a stringer magnetic field.


CONSTRUCTION:
A cyclotron device consists of two D-shaped hollow evacuated metal chambers (say D1 and D2) called the dees. These dees are placed horizontally with their diametric edges parallel and slightly separated from each other. The dees are connected to a high frequency oscillator which can produce a potential difference of the order of 10^4 volts at a frequency of about 10^7 hertz. The two dees are enclosed in an evacuated steel box and are well insulated from it. The box is placed inn a string magnetic field produced by two pole pieces of an electromagnets N,S. The magnetic field is perpendicular to the plane of the dees. At the centre of the device, P is a place of ionic source or positively charged (Check the diagram).

WORKING AND THEORY:
The positive ion to be accelerated is produced at P. Suppose, at that instant D1 is at negative potential and D2 is at positive potential. Therefore, the ion will be accelerated towards D1. On reaching inside D1, the ion will be in a field free space (as the two dees are hollow and metallic). Hence it moves with a constant speed in D1, say v. But due to a perpendicular magnetic field of strength B, the ion will describe a circular path of radius r (say) in D1.

Now in case the time taken by the positive ion to describe a semicircular path is equal to the time during which half cycle of the electric oscillator is completed, then as the ion arrives in the gap between the two dees, the polarity of the two dees is reversed, i.e. D1 becomes positive and D2 becomes negative. Then, the positive ion is accelerated towards D2 and it enters D2 with a greater speed, which remains constant in D2. The ion will describe a semicircular path of greater radius due to a perpendicular magnetic field and again will arrive in the gap between the two dees exactly at the instant, the polarity of the two dees is reversed. Thus, the positive ion will go on accelerating every time it comes into the gap between the dees and will go on describing a circular path of greater and greater radius with greater and greater speed and finally acquires a sufficiently high energy. The accelerated ops can be removed out of the dees from the window W, by applying at the elected field across the deflecting plates E and F (check the diagram).


A Mathematical Model

The charged particle describes a circular path of radius r (say) in D1, due to the perpendicular magnetic field B. Hence, the magnetic force experienced by the particle is balanced by the centripetal force on the particle due to its circular motion (in a circle of radius r).
This gives us the following expression:
[math]\displaystyle{ Bqv = mv^2/r }[/math]

Here: m and q are the mass and the charge of the ion respectively.

Therefore: [math]\displaystyle{ r = mv/Bq }[/math]

MAXIMUM ENERGY OF POSITIVE ION:
Let [math]\displaystyle{ v_0, r_o }[/math] = maximum velocity and maximum radius of the circular path followed by the positive ion in the cyclotron.

Then: [math]\displaystyle{ mv_0^2/r_0 = Bqv_0 or v_0 = Bqr_0/m }[/math]

Therefore: [math]\displaystyle{ Max K.E. = 1/2 mv_0^2 = 1/2 m(Bqr_0/m)^2 = B^2q^2r_0^2/2m }[/math]


CYCLOTRON FREQUENCY:
If T is the time period of oscillating electric field then: [math]\displaystyle{ T = 2t = 2pim/Bq }[/math]

The cyclotron frequency is given by


What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

Go to the following link to have a look at the picture: http://i64.tinypic.com/mil0sz.jpg


Examples

The Large Hadron Collider (LHC) is the world's largest and most powerful particle collider, and its functioning is based on the same principle as a simple cyclotron. It is the largest, most complex experimental facility ever built, and the largest single machine in the world. It was built by the European Organization for Nuclear Research (CERN). The LHC's aim is to allow physicists to test the predictions of different theories of particle physics, high-energy physics and in particular, to further test the properties of the Higgs Boson.

Connectedness

  1. How is this topic connected to something that you are interested in?

I have been closely monitoring and following the developments at the Large Hadron Collider at CERN. The device's functioning and the underlying principle it works on got me interested in this field. This led me to study more on cyclotrons and particle accelerators.

  1. How is it connected to your major?
  2. Is there an interesting industrial application?

History

The cyclotron was first developed by Lawrence and Livingston at the University of California, Berkeley. Lawrence, having worked extensively on electromagnets before, was behind much of the theoretical work. On the other hand, Livingstone was responsible for translating that to a tangible device. When the device was created, it was the strongest particle accelerator of its kind. This was true till another accelerator was constructed in Leningrad, at the Radium Institute.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1] [2] [http://www.express.co.uk/news/world/565315/Scientists-at-Large-Hadron-Collider-hope-to-make-contact-with-PARALLEL-UNIVERSE-in-days/\


References

Baldwin, Paul. "Scientists at Large Hadron Collider Hope to Make Contact with PARALLEL UNIVERSE in Days." N.p., n.d. Web. 05 Dec. 2015.

"Latest Experiment at Large Hadron Collider Reports First Results." MIT News. N.p., n.d. Web. 05 Dec. 2015.

"Large Hadron Collider Starts Doing Science Again." Scientific American. N.p., n.d. Web. 05 Dec. 2015.