Wave-Particle Duality: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
 
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Claimed by Arghya Roy (Spring 2022)'''
'''Claimed by Arghya Roy (Spring 2022)'''


Wave-particle duality is the concept that states every elementary particle behaves like both a wave and a particle.   
Wave-particle duality is the concept that states every elementary particle has both wave and particle-like properties.   




==The Main Idea==  
==The Main Idea==  


In the 1920s, a French physicist named [[Louis de Broglie]] suggested that all matter has wave-like properties. This conclusion was largely the result of two landmark experiments whose outcomes classically contradicted each other. The first experiment was Thomas Young's double slit experiment, which demonstrated that light behaved like a wave. The second experiment was conducted by Albert Einstein, who showed, through his research on the photoelectric effect, that light was made up of discrete packets of energy called photons -- indicating light also shared the properties of a particle.  
In the 1920s, French physicist [[Louis de Broglie]] suggested that all matter has wave-like properties. This conclusion was largely the result of two landmark experiments whose outcomes classically contradicted each other. The first experiment was Thomas Young's double slit experiment, which demonstrated that light behaved like a wave. The second experiment was conducted by Albert Einstein, who showed, through his research on the photoelectric effect, that light was made up of discrete packets of energy called photons: indicating light also shared the properties of a particle. Due to these experiments, physicists came to recognize that classical descriptions of particles and waves don't strictly apply to quantum mechanical entities.  


    
    
Line 12: Line 12:
===Double slit experiment===  
===Double slit experiment===  


The [http://micro.magnet.fsu.edu/primer/java/interference/doubleslit/ double slit experiment] is a deceptively simple experiment that was originally conducted by Thomas Young in the 17th century. In the experiment, Young simply sent a beam of light through two slits and observed the pattern on the surface behind the slits. What he saw was an interference pattern that only could have been present if waves were what went inside two slits. The bright spots occur where the amplitudes of the two waves match (both waves are at their peaks) and the dark spots occur when one wave is at its maximum amplitude and the other is at its minimum.   
The [http://micro.magnet.fsu.edu/primer/java/interference/doubleslit/ double slit experiment] is an experiment that was originally conducted by Thomas Young in the 17th century. In the experiment, Young simply sent a beam of light through two slits and observed the pattern on the surface behind the slits. The experiment revealed an interference pattern that only could have been present if a wave was passed through the two slits. The bright spots occur where the amplitudes of the two waves match (both waves are at their peaks) and the dark spots occur when one wave is at its maximum amplitude, while the other is at its minimum.   


    
    
Line 22: Line 22:
    
    


[[File:Single slit and double slit2.jpg|Single slit and double slit2]]  
[[File:Single slit and double slit2.jpg|Single slit and double slit2]]
 
 


===Photoelectric effect===  
===Photoelectric effect===  
Line 54: Line 52:
Using the Schrödinger equation involves using the proper form of the Hamiltonian operator that accounts for the kinetic and potential energy of the particles, and using that operator to then solve the partial differential equation. The output wave function contains information about the system at different times.  
Using the Schrödinger equation involves using the proper form of the Hamiltonian operator that accounts for the kinetic and potential energy of the particles, and using that operator to then solve the partial differential equation. The output wave function contains information about the system at different times.  


===A Computational Model===  
===A Computational Model===
 
 
The author of this page has written up some code to simulate the double slit experiment. In the model, shot particles are depicted, and as the model runs, you can see how there are two distinct clusters where the particles land.
 
The Glowscript Code: https://trinket.io/glowscript/9dc7cdc15a


==Examples==  
==Examples==  


 
Wave-Particle Duality is a principle that can encompass a number of problems. Past editors of this page have included the following three problems, but for the final 'hard' problem, the current author would like to include a traditional problem involving the two-slits.


The mathematics in solving the Schrodinger equation is quite complicated, but using other simple wave formulas is not very difficult. Two very straightforward formulas involving Planck's constant ''h'', which has a value of <math>6.62607004*10^-34 m^2</math> m^2 kg / s, can be used to relate fundamental properties such as energy ''E'', frequency <math>\nu</math>, and wavelength <math>\lambda</math>.  
Two very straightforward formulas involving Planck's constant ''h'', which has a value of <math>6.62607004*10^-34 m^2</math> m^2 kg / s, can be used to relate fundamental properties such as energy ''E'', frequency <math>\nu</math>, and wavelength <math>\lambda</math>.  


    
    
Line 152: Line 153:




===Ex. 3===  
===Ex. 3: Two-slit experiment problem ===


Problem:


In a two-slit experiment, set the distance between the slits to 500 micrometers, and the screen is 2 meters away. If red light is used, what is the distance between the first and the second fringe on the screen?
Solution:
For this problem, you'll need to utilize Young's Double Slit Formula, which states <math>m*\lambda=d*sin(\theta)</math>
<math>d=5.0e-4 m, \lambda=650e-9 m</math>
From the formula, <math>sin(\theta)=m*\lambda/d</math> -> <math>\theta=sin^{-1}(m*\lambda/d)</math>
To isolate the two degree values for the first and second fringes, input the above values to find
<math>m=1,  \theta_1=0.0744845^{\circ}, m=2,
\theta_2=0.1489691^{\circ}</math>
From trigonometry, we know <math>tan(\theta)=h/l, y_1=h, tan(\theta)=y_1/l</math>, which yields <math>y_1=l*tan(\theta)</math>
Substituting <math>l=2</math> meters and the respective <math>\theta</math> values, we get
<math>y_1=0.0026 m, y_2=0.0052 m</math>,  yielding a difference between the fringes of 0.0026 meters.


==Connectedness==  
==Connectedness==  
Line 162: Line 184:
    
    


For a while I had been interested in the strange nature of quantum mechanics. The pure fact that particles could act as waves was simply alluring. In the future it would be great if, even as a biology major, work in a field that had some aspect of quantum research associated.
Wave-Particle duality as a concept was the way that I first got introduced to quantum weirdness, and higher level physics. I'm personally interested in quantum computing, and a major issue in the current development of multi-qubit systems is decoherence. The Wave-Particle duality is central to measurement in quantum mechanics, because when the particle is located, the particle is forced to be in a more localized state due to [[Heisenberg Uncertainty Principle]].  


    
    
Line 170: Line 192:
    
    


Extensive, high level research in biology, my major, has shown that during photosynthesis, plants benefit from the quantum properties of the light coming from the sun, and are able to use it to transport energy more efficiently. This groundbreaking discovery could be the key to discovering extremely effective cures for diseases that currently are uncurable or are very costly to treat.  
I'm a computer science major, so the adjacent subject would be Quantum Computing, where Wave-Particle Duality and other quantum mechanical properties are used to solve problems Classical computers can't address as easily. Beyond also developing simulators like the one I coded in the Computational Model section, there isn't too much of an overlap.


    
    
Line 184: Line 206:
    
    


Throughout the 1800s, scientists one by one, such as [https://en.wikipedia.org/wiki/John_Dalton John Dalton] and [https://en.wikipedia.org/wiki/Ernest_Rutherford Ernest Rutherford] theorized and discovered elementary particles. Those discoveries in and of themselves were groundbreaking, but of course, scientists pursued these further. It was then that a contradiction arose in two experiments, as mentioned in the above sections, and things went haywire. Newton's classical mechanics had no way of explaining phenomenon like this, so a new field of quantum mechanics was born to study physics of particles on minute scales. The 1900s included scientists like [https://en.wikipedia.org/wiki/Richard_Feynman Richard Feynman] and [https://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger Erwin_Schr%C3%B6dinger] (the scientist the above differential equation was named after) that made leaps in QM. Currently, scientists are working on applying [https://en.wikipedia.org/wiki/Quantum_computing quantum effects to computing].
Throughout the 1800s, scientists, such as [https://en.wikipedia.org/wiki/John_Dalton John Dalton] and [https://en.wikipedia.org/wiki/Ernest_Rutherford Ernest Rutherford] theorized and discovered elementary particles. As discussed in the first section, the photoelectric effect and the double-slit experiment discovered the contradiction in definitely describing physically objects as particles or waves. Newton's classical mechanics had no way of explaining phenomenon like this, and quantum mechanics was developed to study physics on the minute stage. The early 20th century included scientists like [https://en.wikipedia.org/wiki/Richard_Feynman Richard Feynman] and [https://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger Erwin_Schr%C3%B6dinger], who advanced the field. Werner Heisenberg later developed his uncertainty principle, which established many of the relationships we explored in the problem section of this page. More recently, scientists have worked on applying [https://en.wikipedia.org/wiki/Quantum_computing quantum effects to computing].


== See also ==  
== See also ==  
Line 190: Line 212:


=== Further Reading ===
=== Further Reading ===
The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, by Albert Einstein and Leopold Infeld
Chapter 4, Introduction to Modern Physics Textbook, by Kenneth S. Krane
R. Nave. "Wave–Particle Duality" (Web page). HyperPhysics. Georgia State University, Department of Physics and Astronomy: http://hyperphysics.phy-astr.gsu.edu/hbase/mod1.html


=== External Links ===
=== External Links ===

Latest revision as of 21:52, 24 April 2022

Claimed by Arghya Roy (Spring 2022)

Wave-particle duality is the concept that states every elementary particle has both wave and particle-like properties.


The Main Idea

In the 1920s, French physicist Louis de Broglie suggested that all matter has wave-like properties. This conclusion was largely the result of two landmark experiments whose outcomes classically contradicted each other. The first experiment was Thomas Young's double slit experiment, which demonstrated that light behaved like a wave. The second experiment was conducted by Albert Einstein, who showed, through his research on the photoelectric effect, that light was made up of discrete packets of energy called photons: indicating light also shared the properties of a particle. Due to these experiments, physicists came to recognize that classical descriptions of particles and waves don't strictly apply to quantum mechanical entities.


Double slit experiment

The double slit experiment is an experiment that was originally conducted by Thomas Young in the 17th century. In the experiment, Young simply sent a beam of light through two slits and observed the pattern on the surface behind the slits. The experiment revealed an interference pattern that only could have been present if a wave was passed through the two slits. The bright spots occur where the amplitudes of the two waves match (both waves are at their peaks) and the dark spots occur when one wave is at its maximum amplitude, while the other is at its minimum.


Double-slit



Single slit and double slit2

Photoelectric effect

It was known that when light struck a metal, electrons were liberated from the surface. The intuition was that increasing the intensity of light (shining more light) would liberate more electrons. Albert Einstein found something interesting, though. Varying intensity of light had no effect on how many electrons were liberated. Rather, the frequency of the light determined how many electrons, if any, would be freed. Furthermore, the original theory was that the electrons that would be freed was continuous -- even the smallest amount of light would free some electrons. In fact, this was not the case. Einstein found that there was a minimum threshold frequency that must have been present in order to release electrons at all. This implied there was a minimum amount of energy, or quantum involved in the interaction. This pointed to the fact that light in fact behaved as particles (called photons) which were packets of these quantum energies. This directly conflicted with the double slit experiment.


Photoelectric effect


PhET Simulation for Photoelectric effect

A Mathematical Model

Now that we can treat these particles at the quantum level as waves, we can use many different equations from wave mechanics to describe their behavior. One of the most important equations in dealing with wave like properties of these quantum systems and particles is the Schrödinger equation. The Schrödinger equation is the analog of Newton's second law (F = ma) in quantum mechanics, and describes the wave function over time of a system such as a particle moving in a magnetic field. But rather than a simple linear equation, the Schrödinger equation is a linear partial differential equation:


[math]\displaystyle{ i \hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat H \Psi(\mathbf{r},t) }[/math]


is the general, relativistic (works for particles moving up to close to the speed of light) equation, where [math]\displaystyle{ i }[/math] is the square root of negative 1, [math]\displaystyle{ ħ }[/math] is the Planck constant divided by [math]\displaystyle{ 2pi }[/math], the symbol ∂/∂t indicates a partial derivative with respect to time, Ψ is the wave function of the quantum system, and [math]\displaystyle{ Ĥ }[/math] is the Hamiltonian operator, which represents the total energy of the wave function at different times.


Using the Schrödinger equation involves using the proper form of the Hamiltonian operator that accounts for the kinetic and potential energy of the particles, and using that operator to then solve the partial differential equation. The output wave function contains information about the system at different times.

A Computational Model

The author of this page has written up some code to simulate the double slit experiment. In the model, shot particles are depicted, and as the model runs, you can see how there are two distinct clusters where the particles land.

The Glowscript Code: https://trinket.io/glowscript/9dc7cdc15a

Examples

Wave-Particle Duality is a principle that can encompass a number of problems. Past editors of this page have included the following three problems, but for the final 'hard' problem, the current author would like to include a traditional problem involving the two-slits.

Two very straightforward formulas involving Planck's constant h, which has a value of [math]\displaystyle{ 6.62607004*10^-34 m^2 }[/math] m^2 kg / s, can be used to relate fundamental properties such as energy E, frequency [math]\displaystyle{ \nu }[/math], and wavelength [math]\displaystyle{ \lambda }[/math].


[math]\displaystyle{ E = h \nu }[/math] (1)


[math]\displaystyle{ \lambda = \frac{h}{p} . }[/math] (2)


Another very useful equation is that the frequency and the wavelength of a particle are inversely proportional, and multiply to the speed of light, c.


[math]\displaystyle{ c = \lambda\nu }[/math] (3)


Ex. 1

Microwave ovens emit microwave energy with a wavelength of 12.9 cm. What is the energy of exactly one photon of this microwave radiation?


Here we need to use equations 1 and 3.


Next we define our constants.


[math]\displaystyle{ c= 2.998*10^8 m/s }[/math] (this problem wants us to use this number for speed of light), [math]\displaystyle{ h=6.626*10^34J-s }[/math]


Now we simply plug in, making sure that our units match (convert 12.9cm to meters = 0.129m)


[math]\displaystyle{ 2.998*10^8 m/s = .129 * v }[/math]


[math]\displaystyle{ v = 2,324,031,008 Hz }[/math]


Now that we found v, we can solve for E.


[math]\displaystyle{ E = 2,324,031,008 Hz * 6.626*10^-34 }[/math]


[math]\displaystyle{ E= 1.53990294*10^-24 }[/math]


[math]\displaystyle{ E= 1.54*10^-24 }[/math]


Ex. 2

A radio station broadcasts at a frequency of 590 KHz. What is the wavelength of the radio waves?


We need to use equation 3.


First we convert KHz to Hz.


[math]\displaystyle{ 590 }[/math] KHz = [math]\displaystyle{ 590*10^3 }[/math] Hz


[math]\displaystyle{ (3*10^8)/(590*10^3) }[/math] = [math]\displaystyle{ 500 }[/math]m = [math]\displaystyle{ \lambda }[/math]


[math]\displaystyle{ \lambda }[/math] = 500m.


Ex. 3: Two-slit experiment problem

Problem:

In a two-slit experiment, set the distance between the slits to 500 micrometers, and the screen is 2 meters away. If red light is used, what is the distance between the first and the second fringe on the screen?

Solution:

For this problem, you'll need to utilize Young's Double Slit Formula, which states [math]\displaystyle{ m*\lambda=d*sin(\theta) }[/math]

[math]\displaystyle{ d=5.0e-4 m, \lambda=650e-9 m }[/math]

From the formula, [math]\displaystyle{ sin(\theta)=m*\lambda/d }[/math] -> [math]\displaystyle{ \theta=sin^{-1}(m*\lambda/d) }[/math]

To isolate the two degree values for the first and second fringes, input the above values to find

[math]\displaystyle{ m=1, \theta_1=0.0744845^{\circ}, m=2, \theta_2=0.1489691^{\circ} }[/math]

From trigonometry, we know [math]\displaystyle{ tan(\theta)=h/l, y_1=h, tan(\theta)=y_1/l }[/math], which yields [math]\displaystyle{ y_1=l*tan(\theta) }[/math]

Substituting [math]\displaystyle{ l=2 }[/math] meters and the respective [math]\displaystyle{ \theta }[/math] values, we get

[math]\displaystyle{ y_1=0.0026 m, y_2=0.0052 m }[/math], yielding a difference between the fringes of 0.0026 meters.

Connectedness

1. How is this topic connected to something that you are interested in?


Wave-Particle duality as a concept was the way that I first got introduced to quantum weirdness, and higher level physics. I'm personally interested in quantum computing, and a major issue in the current development of multi-qubit systems is decoherence. The Wave-Particle duality is central to measurement in quantum mechanics, because when the particle is located, the particle is forced to be in a more localized state due to Heisenberg Uncertainty Principle.


2. How is it connected to your major?


I'm a computer science major, so the adjacent subject would be Quantum Computing, where Wave-Particle Duality and other quantum mechanical properties are used to solve problems Classical computers can't address as easily. Beyond also developing simulators like the one I coded in the Computational Model section, there isn't too much of an overlap.


3. Is there an interesting industrial application?


Right now, since quantum computing is not effective or cheap enough for companies to use, industry use is limited. But common lab use is in electron microscopy - it is possible by exploiting the high frequencies of electrons, meaning that one can see objects much smaller than those that can only be seen with visible light.

History

Throughout the 1800s, scientists, such as John Dalton and Ernest Rutherford theorized and discovered elementary particles. As discussed in the first section, the photoelectric effect and the double-slit experiment discovered the contradiction in definitely describing physically objects as particles or waves. Newton's classical mechanics had no way of explaining phenomenon like this, and quantum mechanics was developed to study physics on the minute stage. The early 20th century included scientists like Richard Feynman and Erwin_Schr%C3%B6dinger, who advanced the field. Werner Heisenberg later developed his uncertainty principle, which established many of the relationships we explored in the problem section of this page. More recently, scientists have worked on applying quantum effects to computing.

See also

Further Reading

The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, by Albert Einstein and Leopold Infeld

Chapter 4, Introduction to Modern Physics Textbook, by Kenneth S. Krane

R. Nave. "Wave–Particle Duality" (Web page). HyperPhysics. Georgia State University, Department of Physics and Astronomy: http://hyperphysics.phy-astr.gsu.edu/hbase/mod1.html

External Links

This topic is a big idea in the field of quantum mechanics, but there are many other interesting concepts to further explore:


-Quantum entanglement


-Theory of everything


-Standard Model


References

All pictures were from Wikimedia Commons, and references are already hyperlinked to key words in the text.