Speed and Velocity: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
(Replaced content with "The content on this page has been moved to the page Speed vs Velocity. This page should be deleted.")
 
(77 intermediate revisions by 6 users not shown)
Line 1: Line 1:
by Matt Schoonover
The content on this page has been moved to the page [[Speed vs Velocity]].


==Speed and Velocity==
This page should be deleted.
 
The potential difference between two locations does not depend on the path taken between the locations chosen.
 
===A Mathematical Model===
 
In order to find the potential difference between two locations, we use this formula <math> dV = -\left(E_x*dx + E_y*dy + E_z*dz\right) </math>,  where '''E''' is the electric field with components in the x, y, and z directions. Delta x, y, and z are the components of final location minus to the components of the initial location.
 
===A Computational Model===
 
How do we visualize or predict using this topic. Consider embedding some vpython code here [https://trinket.io/glowscript/31d0f9ad9e Teach hands-on with GlowScript]
 
=Simple Example=
[[File:pathindependence.png]]
 
In this example, the electric field is equal to <math> E = \left(E_x, 0, 0\right)</math>. The initial location is A and the final location is C. In order to find the potential difference between A and C, we use <math>dV = V_C - V_A </math>.
 
Since there are no y and z components of the electric field, the potential difference is <math> dV = -\left(E_x*\left(x_1 - 0\right) + 0*\left(-y_1 - 0\right) + 0*0\right)  = -E_x*x_1</math>
 
[[File:BC.png]]
 
Let's say there is a location B at <math> \left(x_1, 0, 0\right) </math>. Now in order to find the potential difference between A and C, we need to find the potential difference between A and B and then between B and C.
 
The potential difference between A and B is <math>dV = V_B - V_A = -\left(E_x*\left(x_1 - 0\right) + 0*0 + 0*0\right) = -E_x*x_1</math>.
 
The potential difference between B and C is <math>dV = V_C - V_B = -\left(E_x*0 + 0*\left(-y_1 - 0\right) + 0*0\right) = 0</math>.
 
Therefore, the potential difference A and C is <math>V_C - V_A = \left(V_C - V_B\right) + \left(V_B - V_A\right) = E_x*x_1 </math>, which is the same answer that we got when we did not use location B.
 
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is it connected to your major?
#Is there an interesting industrial application?
 
==History==
 
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
 
== See also ==
 
Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
 
===Further reading===
 
Books, Articles or other print media on this topic
 
===External links===
 
Internet resources on this topic
 
==References==
 
This section contains the the references you used while writing this page
 
[[Category:Which Category did you place this in?]]

Latest revision as of 15:42, 6 August 2019

The content on this page has been moved to the page Speed vs Velocity.

This page should be deleted.