Wavelength and Frequency: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Created page with " Under Construction By Allie Johnson Short Description of Topic ==The Main Idea== State, in your own words, the main idea for this topic Electric Field of Capacitor ===A M...")
 
 
(46 intermediate revisions by the same user not shown)
Line 2: Line 2:
Under Construction By Allie Johnson
Under Construction By Allie Johnson


Short Description of Topic
 
 
Wavelength and Frequency are used to describe a sinusoidal electromagnetic wave. Frequency is the number of peaks per second that pass a given location. Wavelength is the distance between two peaks.
 
 
 


==The Main Idea==
==The Main Idea==


State, in your own words, the main idea for this topic
 
Electric Field of Capacitor
The frequency of a sinusoidal electromagnetic wave is also the inverse of the period. When that wave is plotted over time, a period will be the distance between two peaks. Frequency is measured in inverse seconds or hertz (Hz).
Wavelength is the distance between two peaks of a sinusoidal electromagnetic wave when plotted over a direction.
[[File:Simplesinewave.jpg|200px|thumb|left|Example of a Wavelength measurement on a simple sine wave]]
 
 
Wavelength is directly proportional to frequency. Wavelength is the speed of light divided by the frequency. Therefore, as frequency increases wavelength decreases. This is because over a specific amount of time, the wave will move at the speed of light. Electromagnetic radiation is categorized by its wavelength, spanning from gamma rays to radio waves.
[[File:Electromagneticspectromwavelength.JPG|200px|thumb|right|Types of Electromagnetic Radiation Characterized by Wavelength]]
 
 
 
 
 
 
 
 
 


===A Mathematical Model===
===A Mathematical Model===


What are the mathematical equations that allow us to model this topic.  For example <math>{\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}</math> where '''p''' is the momentum of the system and '''F''' is the net force from the surroundings.
===Relationship Between Frequency and Period===
 
:<math>f = \frac{1}{T}</math> where '''F''' is the frequency and '''T''' is the period.
 
===Relationship Between Frequency and Wavelength===
 
:<math>f = \frac{c}{\lambda}</math> where '''F''' is the frequency, '''c''' is the speed of light constant (c = 2.998×108 m s−1), and '''lambda''' is the wavelength.
 
===Relationship Between Frequency and Angular Frequency===
 
:<math>\omega = {{2 \pi} \over T} = {2 \pi f} , </math> where '''ω''' is the angular frequency or angular speed (radians per second),'''T''' is the frequency over period (measured in seconds), and '''f''' is the ordinary frequency (measured in hertz).
 


===A Computational Model===
===A Computational Model===


How do we visualize or predict using this topic. Consider embedding some vpython code here [https://trinket.io/glowscript/31d0f9ad9e Teach hands-on with GlowScript]
[[File:Frequencyvswavelengthwave.png|600px|thumb|left|Types of Electromagnetic Radiation Characterized by Wavelength]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


==Examples==
==Examples==
Conversions to meters per second:
Prefix  
     
p (pico)= 10e-12
n (nano)= 10e-9
µ (micro)= 10e-6
m (milli)= 10e-3
k (kilo)= 10e3
M (mega)= 10e6
G (Giga)= 10e9
T (Tera)= 10e12


Be sure to show all steps in your solution and include diagrams whenever possible


===Simple===
===Simple===
Problem #1a: Calculate the frequency of radiation with a wavelength of 442 nm.
Example #1b: The wavelength of an argon laser's output is 488.0 nm. Calculate the frequency of this wavelength of electromagnetic radiation.
Solution to 1a:
1) Convert nm to m:
442 nm x (1 m / 109 nm) = 4.42 x 10¯7 m
2) Substitute into λν = c:
(4.42 x 10¯7 m) (x) = 3.00 x 108 m s¯1
x = 6.79 x 1014 s¯1
Solution to 1b:
1) Convert nm to m:
488 nm x (1 m / 109 nm) = 4.88 x 10¯7 m
Then, substitute into λν = c:
(4.88 x 10¯7 m) (x) = 3.00 x 108 m s¯1
x = 6.15 x 1014 s¯1
The use of nm for wavelength is quite common.
===Middling===
===Middling===
Problem #2a: Calculate the frequency of electromagnetic radiation that has a wavelength of 1.315 micrometers.
Problem #2b: What is the frequency of infrared radiation of wavelength 67.5 μm?
Solution to 2a:
1) Convert μm to m:
1.315 μm x (1 m / 106 μm) = 1.315 x 10¯6 m
2) Substitute into λν = c:
(1.315 x 10¯6 m) (x) = 3.00 x 108 m s¯1
x = 2.28 x 1014 s¯1
Solution to 2b:
1) Convert μm to m:
67.5 μm = 67.5 x 10-6 m
2) Use λν = c to determine the frequency:
(67.5 x 10-6 m) (x) = 3.00 x 108 m/s
x = 4.44 x 1012 s-1
===Difficult===
===Difficult===
Problem #3a: Calculate the frequency of radiation with a wavelength of 4.92 cm.
Problem #3b: Calculate the frequency of radiation with a wavelength of 4.55 x 10¯9 cm.
Comment: since the wavelengths are already in cm, we can use c = 3.00 x 1010 cm s¯1 and not have to do any conversions at all.
Solution to 3a:
(4.92 cm) (x) = 3.00 x 1010 cm s¯1
x = 6.10 x 109 s¯1
Solution to 3b:
(4.55 x 10¯9 cm) (x) = 3.00 x 1010 cm s¯1
x = 6.59 x 1018 s¯


==Connectedness==
==Connectedness==
#How is this topic connected to something that you are interested in?
 
#How is it connected to your major?
Frequency and Wavelength relate to cancer risk testing. For example, imaging and radiology like x-rays and other like Computed tomography (CT) scans, Magnetic resonance imaging (MRI) scans, Mammography, and Ultrasound save millions of lives by detecting cancer and aid in formulating treatment plans. Each of these tests requires a very specific wavelength and frequency to take images. These medical machines that use electromagnetic waves are directly related to the biomedical engineering field.
#Is there an interesting industrial application?


==History==
==History==


Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
Maxwell's theory of electromagnetism (1865) stated that there where electromagnetic waves moving at the speed of light. Maxwell concluded that light itself was just such a wave. After this famous book many scientists tried to detect this electromagnetic radiation using various electrical apparatuses.
 
In 1886, Heinrich Hertz  tried to prove Maxwell's theory with his own electrical apparatus. He made a high voltage induction coil, a capacitor and a spark gap  to cause a spark discharge between the spark gap’s two poles which moved back and forth at a frequency determined the capacitor and the induction coil.
 
.


== See also ==
== See also ==
For more interest in the movement of sinusoidal waves over time visit:
http://www.physicsbook.gatech.edu/Electromagnetic_Propagation


Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
For interest in how wave length and frequency relate to radiation visit:
http://www.physicsbook.gatech.edu/Sinusoidal_Electromagnetic_Radiaton


===Further reading===
===Further reading===


Books, Articles or other print media on this topic
Chabay, Ruth W., and Bruce A. Sherwood. Matter & Interactions. 3rd ed. Hoboken, NJ: Wiley, 2011. Print


===External links===
===External links===


Internet resources on this topic
https://www.youtube.com/watch?v=tJW_a6JeXD8


==References==
==References==
 
"Heinrich Hertz: The Discovery of Radio Waves." Heinrich Hertz: The Discovery of Radio Waves. Web. 3 Dec. 2015 http://www.juliantrubin.com/bigten/hertzexperiment.html
This section contains the the references you used while writing this page
Chabay, Ruth W., and Bruce A. Sherwood. Matter & Interactions. 3rd ed. Hoboken, NJ: Wiley, 2011. Print
 
[[Category:Which Category did you place this in?]]

Latest revision as of 16:37, 3 December 2015

Under Construction By Allie Johnson


Wavelength and Frequency are used to describe a sinusoidal electromagnetic wave. Frequency is the number of peaks per second that pass a given location. Wavelength is the distance between two peaks.



The Main Idea

The frequency of a sinusoidal electromagnetic wave is also the inverse of the period. When that wave is plotted over time, a period will be the distance between two peaks. Frequency is measured in inverse seconds or hertz (Hz). Wavelength is the distance between two peaks of a sinusoidal electromagnetic wave when plotted over a direction.

Example of a Wavelength measurement on a simple sine wave


Wavelength is directly proportional to frequency. Wavelength is the speed of light divided by the frequency. Therefore, as frequency increases wavelength decreases. This is because over a specific amount of time, the wave will move at the speed of light. Electromagnetic radiation is categorized by its wavelength, spanning from gamma rays to radio waves.

Types of Electromagnetic Radiation Characterized by Wavelength






A Mathematical Model

Relationship Between Frequency and Period

[math]\displaystyle{ f = \frac{1}{T} }[/math] where F is the frequency and T is the period.

Relationship Between Frequency and Wavelength

[math]\displaystyle{ f = \frac{c}{\lambda} }[/math] where F is the frequency, c is the speed of light constant (c = 2.998×108 m s−1), and lambda is the wavelength.

Relationship Between Frequency and Angular Frequency

[math]\displaystyle{ \omega = {{2 \pi} \over T} = {2 \pi f} , }[/math] where ω is the angular frequency or angular speed (radians per second),T is the frequency over period (measured in seconds), and f is the ordinary frequency (measured in hertz).


A Computational Model

Types of Electromagnetic Radiation Characterized by Wavelength

















Examples

Conversions to meters per second:

Prefix

p (pico)= 10e-12

n (nano)= 10e-9

µ (micro)= 10e-6

m (milli)= 10e-3

k (kilo)= 10e3

M (mega)= 10e6

G (Giga)= 10e9

T (Tera)= 10e12


Simple

Problem #1a: Calculate the frequency of radiation with a wavelength of 442 nm. Example #1b: The wavelength of an argon laser's output is 488.0 nm. Calculate the frequency of this wavelength of electromagnetic radiation.

Solution to 1a:

1) Convert nm to m:

442 nm x (1 m / 109 nm) = 4.42 x 10¯7 m 2) Substitute into λν = c:

(4.42 x 10¯7 m) (x) = 3.00 x 108 m s¯1 x = 6.79 x 1014 s¯1

Solution to 1b:

1) Convert nm to m:

488 nm x (1 m / 109 nm) = 4.88 x 10¯7 m Then, substitute into λν = c:

(4.88 x 10¯7 m) (x) = 3.00 x 108 m s¯1 x = 6.15 x 1014 s¯1

The use of nm for wavelength is quite common.

Middling

Problem #2a: Calculate the frequency of electromagnetic radiation that has a wavelength of 1.315 micrometers. Problem #2b: What is the frequency of infrared radiation of wavelength 67.5 μm?

Solution to 2a:

1) Convert μm to m:

1.315 μm x (1 m / 106 μm) = 1.315 x 10¯6 m 2) Substitute into λν = c:

(1.315 x 10¯6 m) (x) = 3.00 x 108 m s¯1 x = 2.28 x 1014 s¯1

Solution to 2b:

1) Convert μm to m:

67.5 μm = 67.5 x 10-6 m 2) Use λν = c to determine the frequency:

(67.5 x 10-6 m) (x) = 3.00 x 108 m/s x = 4.44 x 1012 s-1

Difficult

Problem #3a: Calculate the frequency of radiation with a wavelength of 4.92 cm. Problem #3b: Calculate the frequency of radiation with a wavelength of 4.55 x 10¯9 cm.

Comment: since the wavelengths are already in cm, we can use c = 3.00 x 1010 cm s¯1 and not have to do any conversions at all.

Solution to 3a:

(4.92 cm) (x) = 3.00 x 1010 cm s¯1 x = 6.10 x 109 s¯1

Solution to 3b:

(4.55 x 10¯9 cm) (x) = 3.00 x 1010 cm s¯1 x = 6.59 x 1018 s¯

Connectedness

Frequency and Wavelength relate to cancer risk testing. For example, imaging and radiology like x-rays and other like Computed tomography (CT) scans, Magnetic resonance imaging (MRI) scans, Mammography, and Ultrasound save millions of lives by detecting cancer and aid in formulating treatment plans. Each of these tests requires a very specific wavelength and frequency to take images. These medical machines that use electromagnetic waves are directly related to the biomedical engineering field.

History

Maxwell's theory of electromagnetism (1865) stated that there where electromagnetic waves moving at the speed of light. Maxwell concluded that light itself was just such a wave. After this famous book many scientists tried to detect this electromagnetic radiation using various electrical apparatuses.

In 1886, Heinrich Hertz tried to prove Maxwell's theory with his own electrical apparatus. He made a high voltage induction coil, a capacitor and a spark gap to cause a spark discharge between the spark gap’s two poles which moved back and forth at a frequency determined the capacitor and the induction coil.

.

See also

For more interest in the movement of sinusoidal waves over time visit: http://www.physicsbook.gatech.edu/Electromagnetic_Propagation

For interest in how wave length and frequency relate to radiation visit: http://www.physicsbook.gatech.edu/Sinusoidal_Electromagnetic_Radiaton

Further reading

Chabay, Ruth W., and Bruce A. Sherwood. Matter & Interactions. 3rd ed. Hoboken, NJ: Wiley, 2011. Print

External links

https://www.youtube.com/watch?v=tJW_a6JeXD8

References

"Heinrich Hertz: The Discovery of Radio Waves." Heinrich Hertz: The Discovery of Radio Waves. Web. 3 Dec. 2015 http://www.juliantrubin.com/bigten/hertzexperiment.html Chabay, Ruth W., and Bruce A. Sherwood. Matter & Interactions. 3rd ed. Hoboken, NJ: Wiley, 2011. Print