Resistivity: Difference between revisions

From Physics Book
Jump to navigation Jump to search
 
(55 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Resistivity is the measure of how difficult it is for a current to pass through a certain material at a certain temperature.
Claimed by Brian Duffy -- Fall 2016


This quantity often measured in ohms per meter or <math>(\frac{Volts}{Amps\ Meter})</math> is used to determine the resistance of a given conductor. Resistivity of an object is almost solely dependent on two factors, temperature and material. Resistivity unlike resistance is independent of the size or shape of a material.
Resistivity is the measure of a specific materials ability to impede the flow of an electric current.
The SI unit of resistivity is measured in Ohms per meter,
(<math>({Ohm}⋅{Meter})</math> or <math>({Ω}{m})</math>) and is used to determine the resistance of a given conductor.
Resistivity of an object is almost entirely dependent on two specific factors: temperature and material. Resistivity is totally dependent of the shape or size of whatever material, which is different from overall resistance (which depends on resistivity, length and cross-sectional area of the object).


==The Main Idea==
==The Main Idea==
Resistivity is essentially a constant that describes the resistability of a specific material with respect to the current that passes through it. Some materials will more readily allow the flow of current in comparison to others. For instance, copper has half the resistivity as that of aluminum. Thus, most wires are made out of copper instead of aluminum -- as aluminum impedes the flow of electrical current. Materials like glass, which are poor conductors usually have very high resistivity, and metals which conduct electricity well have much lower resistivity. 


State, in your own words, the main idea for this topic
===A Mathematical Model===
Electric Field of Capacitor


===A Mathematical Model===
Resistance is often calculated from resistivity using the following equation <math>R = \frac{\rho L}{A} </math> where R is the resistance <math>\rho</math> is the resistivity, L is the length, and A is the cross-sectional area. While the area of the wire or object may be variable, as well as the length, resistivity remains constant because the material remains constant.
 
In a circuit the Electrical Resistance is then used to calculate the current in a circuit using Ohm's Law and the following equation <math>I = \frac{|\Delta V|}{R} </math> where '''V''' is the voltage, '''I''' is the current, and '''R''' is the resistance. In this equations voltage and resistance are independent variables, whereas the Current is the dependent variable. This law, while useful, only works for ohmic resistors. 
 
[[File:Ohmic_Resistor1.jpg]]
 
[[File:Resistors1.jpg]]
 
The definition provided above is specific to ohmic resistors, as stated. These resistors have a uniform cross-section, where current flows uniformly through them. Instead, a more general definition starts with the idea that an electric field inside a specific material is responsible for the electric current flowing within it. Because most of the resistors we will deal with are uniform, a simple ratio of field to current can be used in regards to resistivity.  Thus, the electrical resistivity, or "p" can be defined as the ratio of the electric field to the density of the current it creates:
 
:<math>\rho=\frac{E}{J}, \,\!</math>
 
where "ρ" is the resistivity (ohm⋅meter), "E" is the magnitude of the electric field (volts per meter), and J is the magnitude of the current density (amperes per square meter).


Resistance is often calculate from resistivity using the following equation <math>R = \frac{\rho L}{A} </math> where R is the resistance <math>\rho</math> is the resistivity L is the length and A is the cross-sectional area.
Note, remember above where objects with higher resistance are worse conductors and vice versa; this can be seen when ''E'' and ''J'' are inside the conductor.
Conductivity is the inverse of resistivity:


In a circuit the Electrical Resistance is then often used to calculate the current in a circuit using the following equation Ohm's law <math>I = \frac{|\Delta V|}{R} </math> where '''V''' is the voltage and '''I''' is the current and '''R''' is the resistance. In this equations voltage and resistance are independent variables and Current is the dependant variable. This law, while useful, only works for certain resistors called ohmic resistors.
:<math>\sigma=\frac{1}{\rho} = \frac{J}{E}. \,\!</math>


===Water Analogy===
===Water Analogy===
The relationship between resistivity and resitance can often be though of as a series of pipes. Electrical Resistance in a particular material is like pipes of varying diameter. The larger the pipe the easier it is for water to get through. The resitivity of the "pipes" never changes. What does change is the cross sectional area making it easier for "water" to pass through.
The relationship between resistivity and resistance can be thought of as a series of pipes. Electrical Resistance in a particular material is similar to an analogy of pipes of varying diameter. The larger the pipe the easier it is for water to get through. The resistivity of the "pipes" never change, but the cross sectional area does, in order for the facilitation of "water" flow (current). If you think about sucking water through a thick straw and a coffee stirrer, it is much more difficult to suck the water using the stirrer. Though the materials both are made of may be the same and the water is the same in each instance (i.e. resistivity), it is harder to use the coffee stirrer because of the smaller cross-sectional area.


[[File:Thickness.gif]]
[[File:Thickness.gif]]


===Resistivity of Materials===
===Resistivity of Materials===
Every conductor has a natural resistivity that it relatively consistent at a given temperature. This number is calculated through experimentation. Here is a list of common conductors and their resistivity.
Every conductor has a natural resistivity that is relatively consistent at a given temperature. This number is calculated through experimentation. Here is a list of common conductors and their resistivities.  


[[File:Resistivity.jpg]]
[[File:Resistivity.jpg]]
(http://avstop.com/ac/Aviation_Maintenance_Technician_Handbook_General/images/fig10-41.jpg)
As you can see, silver has a lower resistivity than copper but because silver is the more expensive of the two, copper is the material of choice when making wires for both construction and classroom use.


===Temperature===
===Temperature===
In addition to each material having a different resistivity. The same materials at different temperatures have different resistivities. As materials heat up it becomes harder and harder for current to pass through them. This is because at the sub-atomic level. The nuclei are moving faster making it harder for electrons to move through.
In addition to each material having a different resistivity. The same material at different temperatures may exhibit different resistivities. As materials heat up they become less facilitative of current flow. This is due to the fact that nuclei are moving faster at a sub-atomic level, when this occurs it creates more of a wall which is difficult for electrons to pass through. Because the nuclei do not move as much when the material is colder, it creates less of a "sheet" of nuclei for electrons to pass through.  


[[File:TemperatureHot.gif]] [[File:TemperatureCold.gif]]
[[File:TemperatureHot.gif]] [[File:TemperatureCold.gif]]
Line 31: Line 50:
==Examples==
==Examples==


3 examples of potential problems involving resistivity and resistance.
Here are a few questions involving resistance and resistivity of differing difficulty.  


===Simple===
==='''Simple'''===
====Question====
====Problem 1====


An unknown ohmic resistor is attached to a 3V battery and the current is measured at 1 amp. Calculate the resistance of the unknown resistor.
An unknown ohmic resistor is attached to a 3V battery and the current is measured at 1 amp. Calculate the resistance of the unknown resistor.


====Answer====
Also, theoretically, if this resistor has a diameter of 0.03m, and length of 0.06m, what is its resistivity?
 
====Solution====


Using the equation I=|dV|/R we can substitute is 1 for I and 3 for dV leaving us with the equation 1=3/R. Solving for R we come to the answer that the it must be a 3 ohm resistor.
Using the equation <math>I = \frac{dV}{R} </math> we can substitute is 1 for I and 3 for dV leaving us with the equation <math>1 = \frac{3}{R} </math>. Solving for R we come to the conclusion that the resistance must be 3 ohms.


===Middling===
To calculate resistivity, we put 7.06E-4m^2 for cross-sectional area, 0.06m for length and 3 ohms for resistance into our equation, getting <math>3 = \frac{\rho 0.06}{7.06E-4} </math>. When you solve for resitivity, you get the answer of 0.0353 ohms/meter


====Question====
==='''Middling'''===


A cylinder of an unknown material has a resistance of 30 ohms. Another cylinder made of the exact same material is twice as long and has a radius that is twice as large. What is the resistance of this cylinder.
====Problem 2====


====Answer====
A cylinder of an unknown material has a resistance of 30 ohms. Another cylinder made of the exact same material is twice as long and has a radius that is twice as large. What is the resistance of this cylinder?
 
====Solution====
Given the equation <math>R = \frac{\rho L}{A} </math> we know that when the length is doubled the resistance must also double. In addition we know that when the radius is doubled, the cross section area must go up by a factor of 4. This means that the resistance would go down by a factor of 1/4. Putting both of those facts together know that R2 = R1 * 2 * 1/4 or R2 = 15 ohms.
Given the equation <math>R = \frac{\rho L}{A} </math> we know that when the length is doubled the resistance must also double. In addition we know that when the radius is doubled, the cross section area must go up by a factor of 4. This means that the resistance would go down by a factor of 1/4. Putting both of those facts together know that R2 = R1 * 2 * 1/4 or R2 = 15 ohms.


===Difficult===
==='''Difficult'''===


====Question====
====Problem 3====


A battery and resistor circuit is connected to a very sensitive ohmmeter is taken outside and left in the sun on a very hot day. what if anything will happen to its reading after being outside for a few minutes and why. Assume the battery is unaffected.
A battery and resistor circuit is connected to a very sensitive ohmmeter and the two are then taken outside and left in the sun on a very hot day. What, if anything, will happen to its reading after being outside for a few minutes and why? Assume the battery is unaffected.


====Answer====
====Solution====


The current would be less that it was inside. Since the circuit was taken outside the resistor would heat up due to the sun. This would in turn cause its resistance to go up. When the resistance goes up and the voltage of the battery stays the same. due to Ohms Law the current must go down, resulting in a lower reading.
The current reading would be less than what it was while inside. Since the resistor circuit is outside, and hotter than usual the resistor will heat up. As discussed before, resistivity of a material goes up when it is hotter than normal, due to the increase motion of nuclei. The resistance goes up, but because the battery remains unaffected and holds the same amount of charge, the value of the current must go down (due to the inverse relationship of resistance and current). This is all based off of the very simple Ohms Law; <math>I = \frac{V}{R} </math>


==Connectedness==
==Scope==
#How is this topic connected to something that you are interested in?
#How is it connected to your major?
#Is there an interesting industrial application?


==History==
Resistivity is a very important topic for all types of engineers, especially electrical and mechanical. It is important to know how circuits operate outside of laboratory conditions, and one thing that changes a lot in the real world is resistivity due to normal and extreme temperature conditions. Also, when building things like phones and other electronics, the total cost is always important. Though gold and silver may have very low resistivity, designers have to look at other metals that offer similar attributes but for lower costs. So overall, it is an important fundamental concept for engineers to understand the idea of resistance, but also play a large role in large scale manufacturing of different devices.
 
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.


== See also ==
== See also ==


Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
*[[Ohm's Law]]
*[[Thin and Thick Wires]]
*[[Current]]


===Further reading===
===Further reading===
Line 100: Line 120:
==References==
==References==


This section contains the the references you used while writing this page
1. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/resis.html
 
2. http://www.britannica.com/technology/resistance-electronics
 
3. http://www.nist.gov/data/PDFfiles/jpcrd155.pdf
 
4. http://www.regentsprep.org/Regents/physics/phys03/bresist/default.htm
 
5. http://forums.extremeoverclocking.com/showthread.php?p=4144637


[[Category:Which Category did you place this in?]]
[[Category:Simple Circuits]]

Latest revision as of 19:11, 27 November 2016

Claimed by Brian Duffy -- Fall 2016

Resistivity is the measure of a specific materials ability to impede the flow of an electric current. The SI unit of resistivity is measured in Ohms per meter, ([math]\displaystyle{ ({Ohm}⋅{Meter}) }[/math] or [math]\displaystyle{ ({Ω}⋅{m}) }[/math]) and is used to determine the resistance of a given conductor. Resistivity of an object is almost entirely dependent on two specific factors: temperature and material. Resistivity is totally dependent of the shape or size of whatever material, which is different from overall resistance (which depends on resistivity, length and cross-sectional area of the object).

The Main Idea

Resistivity is essentially a constant that describes the resistability of a specific material with respect to the current that passes through it. Some materials will more readily allow the flow of current in comparison to others. For instance, copper has half the resistivity as that of aluminum. Thus, most wires are made out of copper instead of aluminum -- as aluminum impedes the flow of electrical current. Materials like glass, which are poor conductors usually have very high resistivity, and metals which conduct electricity well have much lower resistivity.

A Mathematical Model

Resistance is often calculated from resistivity using the following equation [math]\displaystyle{ R = \frac{\rho L}{A} }[/math] where R is the resistance [math]\displaystyle{ \rho }[/math] is the resistivity, L is the length, and A is the cross-sectional area. While the area of the wire or object may be variable, as well as the length, resistivity remains constant because the material remains constant.

In a circuit the Electrical Resistance is then used to calculate the current in a circuit using Ohm's Law and the following equation [math]\displaystyle{ I = \frac{|\Delta V|}{R} }[/math] where V is the voltage, I is the current, and R is the resistance. In this equations voltage and resistance are independent variables, whereas the Current is the dependent variable. This law, while useful, only works for ohmic resistors.

The definition provided above is specific to ohmic resistors, as stated. These resistors have a uniform cross-section, where current flows uniformly through them. Instead, a more general definition starts with the idea that an electric field inside a specific material is responsible for the electric current flowing within it. Because most of the resistors we will deal with are uniform, a simple ratio of field to current can be used in regards to resistivity. Thus, the electrical resistivity, or "p" can be defined as the ratio of the electric field to the density of the current it creates:

[math]\displaystyle{ \rho=\frac{E}{J}, \,\! }[/math]

where "ρ" is the resistivity (ohm⋅meter), "E" is the magnitude of the electric field (volts per meter), and J is the magnitude of the current density (amperes per square meter).

Note, remember above where objects with higher resistance are worse conductors and vice versa; this can be seen when E and J are inside the conductor. Conductivity is the inverse of resistivity:

[math]\displaystyle{ \sigma=\frac{1}{\rho} = \frac{J}{E}. \,\! }[/math]

Water Analogy

The relationship between resistivity and resistance can be thought of as a series of pipes. Electrical Resistance in a particular material is similar to an analogy of pipes of varying diameter. The larger the pipe the easier it is for water to get through. The resistivity of the "pipes" never change, but the cross sectional area does, in order for the facilitation of "water" flow (current). If you think about sucking water through a thick straw and a coffee stirrer, it is much more difficult to suck the water using the stirrer. Though the materials both are made of may be the same and the water is the same in each instance (i.e. resistivity), it is harder to use the coffee stirrer because of the smaller cross-sectional area.

Resistivity of Materials

Every conductor has a natural resistivity that is relatively consistent at a given temperature. This number is calculated through experimentation. Here is a list of common conductors and their resistivities.

(http://avstop.com/ac/Aviation_Maintenance_Technician_Handbook_General/images/fig10-41.jpg)

As you can see, silver has a lower resistivity than copper but because silver is the more expensive of the two, copper is the material of choice when making wires for both construction and classroom use.

Temperature

In addition to each material having a different resistivity. The same material at different temperatures may exhibit different resistivities. As materials heat up they become less facilitative of current flow. This is due to the fact that nuclei are moving faster at a sub-atomic level, when this occurs it creates more of a wall which is difficult for electrons to pass through. Because the nuclei do not move as much when the material is colder, it creates less of a "sheet" of nuclei for electrons to pass through.

Examples

Here are a few questions involving resistance and resistivity of differing difficulty.

Simple

Problem 1

An unknown ohmic resistor is attached to a 3V battery and the current is measured at 1 amp. Calculate the resistance of the unknown resistor.

Also, theoretically, if this resistor has a diameter of 0.03m, and length of 0.06m, what is its resistivity?

Solution

Using the equation [math]\displaystyle{ I = \frac{dV}{R} }[/math] we can substitute is 1 for I and 3 for dV leaving us with the equation [math]\displaystyle{ 1 = \frac{3}{R} }[/math]. Solving for R we come to the conclusion that the resistance must be 3 ohms.

To calculate resistivity, we put 7.06E-4m^2 for cross-sectional area, 0.06m for length and 3 ohms for resistance into our equation, getting [math]\displaystyle{ 3 = \frac{\rho 0.06}{7.06E-4} }[/math]. When you solve for resitivity, you get the answer of 0.0353 ohms/meter

Middling

Problem 2

A cylinder of an unknown material has a resistance of 30 ohms. Another cylinder made of the exact same material is twice as long and has a radius that is twice as large. What is the resistance of this cylinder?

Solution

Given the equation [math]\displaystyle{ R = \frac{\rho L}{A} }[/math] we know that when the length is doubled the resistance must also double. In addition we know that when the radius is doubled, the cross section area must go up by a factor of 4. This means that the resistance would go down by a factor of 1/4. Putting both of those facts together know that R2 = R1 * 2 * 1/4 or R2 = 15 ohms.

Difficult

Problem 3

A battery and resistor circuit is connected to a very sensitive ohmmeter and the two are then taken outside and left in the sun on a very hot day. What, if anything, will happen to its reading after being outside for a few minutes and why? Assume the battery is unaffected.

Solution

The current reading would be less than what it was while inside. Since the resistor circuit is outside, and hotter than usual the resistor will heat up. As discussed before, resistivity of a material goes up when it is hotter than normal, due to the increase motion of nuclei. The resistance goes up, but because the battery remains unaffected and holds the same amount of charge, the value of the current must go down (due to the inverse relationship of resistance and current). This is all based off of the very simple Ohms Law; [math]\displaystyle{ I = \frac{V}{R} }[/math]

Scope

Resistivity is a very important topic for all types of engineers, especially electrical and mechanical. It is important to know how circuits operate outside of laboratory conditions, and one thing that changes a lot in the real world is resistivity due to normal and extreme temperature conditions. Also, when building things like phones and other electronics, the total cost is always important. Though gold and silver may have very low resistivity, designers have to look at other metals that offer similar attributes but for lower costs. So overall, it is an important fundamental concept for engineers to understand the idea of resistance, but also play a large role in large scale manufacturing of different devices.

See also

Further reading

1. Matter and Interactions by Ruth Chabay and Bruce Sherwood

External links

Helpful Links

1. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/resis.html

2. http://www.britannica.com/technology/resistance-electronics

3. http://www.cleanroom.byu.edu/Resistivities.phtml

4. http://www.nist.gov/data/PDFfiles/jpcrd155.pdf

5. http://www.regentsprep.org/Regents/physics/phys03/bresist/default.htm

Helpful Videos

1. https://www.youtube.com/watch?v=-PJcj1TCf_g

2. https://www.youtube.com/watch?v=J4Vq-xHqUo8

References

1. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/resis.html

2. http://www.britannica.com/technology/resistance-electronics

3. http://www.nist.gov/data/PDFfiles/jpcrd155.pdf

4. http://www.regentsprep.org/Regents/physics/phys03/bresist/default.htm

5. http://forums.extremeoverclocking.com/showthread.php?p=4144637