Terminal Speed: Difference between revisions

From Physics Book
Jump to navigation Jump to search
 
(34 intermediate revisions by 2 users not shown)
Line 1: Line 1:
claimed by cshimkus3
'''Claimed by cshimkus3'''
==Acceleration of Falling Objects==


When you drop an object from a certain height off the ground, you can observe that the speed of the object does not remain constant throughout that object's free fall.  The object's speed changes as it falls and we know from the momentum principle that this is due to a net force acting on the object( Fnet = dp/dt ).  If you drop an object from a tall enough starting height, you can also observe that the acceleration of the object is not constant either, so one can conclude that the net force on the object is not constant.  An object falling towards the Earth's surface will not accelerate indefinitely, but will reach what is called ' ' terminal velocity ' '.  Odds are you are familiar with the force of gravity, the force that holds you to Earth's surface and causes an object to accelerate initially downward.  Gravity is defined as F=mg, where g is the acceleration constant of 9.8 m/s^2 (on Earth), and is a constant force.  Another force, friction, is also acting on a falling object, however. This friction is due to the contact between molecules of the falling object and air molecules and is non-constant through the objects free-fall.  In the following sections we will look into greater detail the effects of friction due to air.  
Because air resistance acts to oppose the movement of an object, and grows stronger the faster the object is moving, the object will eventually reach an equilibrium in which the force of air resistance is exactly equal and opposite to the force of gravity, so that there is no net force on the object. The speed at which this occurs can be computed algebraically, while the transitory stage as the object approaches this velocity requires (when working within the scope of this course) the use of computational methods.


===Falling Objects in a Vacuum===
==Main Idea==
 
In [[Projectile Motion]], we considered the motion of an object under the influence of a constant gravitational force <math> g = 9.8 \; m/s^2 </math>, an approximation which is essentially accurate on the Earth's surface (the more accurate understanding, provided by Newton, may be found in [[Gravitational Force]]). However, we did not take into account a very important factor, because in everyday life, objects in motion '' do not '' stay in motion:  this is because they are feeling the effects of air resistance (and, if they are in contact with other objects, friction). If, on the other hand, and object falls in a vacuum, it can be observed to have the same acceleration regardless of its mass or size.  In the following video, a feather and a ball bearing are dropped inside a vacuum, and one may observe that they fall at exactly the same rate. (Click on the picture)
As stated above, the force due to gravity on an object is constant. This can be proven by an object that is in free fall and is also in a vacuum. When an object is falling within a vacuum, it can be observed to have constant acceleration of 9.8 m/s^2 regardless of its mass or size.  In the following video, a feather and a ball bearing are dropped inside a vacuum. See how both objects fall at the same rate. (Click on the picture)


[[File:Ballfeather.jpg |link=https://www.youtube.com/watch?v=_XJcZ-KoL9o ]]
[[File:Ballfeather.jpg |link=https://www.youtube.com/watch?v=_XJcZ-KoL9o ]]


===Friction Due to Air===
===Mathematical Model===
The friction due to air is a non-constant force on a falling object, and is related to multiple factors, such as cross-sectional area, the objects velocity, and the density of air.  The force of air on a falling object is defined by the following equation in the opposite direction of the objects motion:


[[File:Airforce.gif]]
The friction due to air is a non-constant force on a falling object, and is determined by a number of factors.  The force of air on a falling object is defined as follows<ref> http://hyperphysics.phy-astr.gsu.edu/hbase/airfri2.html </ref>:


C is the numerical drag coeffecient which is dependent on the shape of the object.
<math> \vec{F}_{drag} = -\frac{1}{2} C \rho A v^2 \hat{v} </math>


So, when the force of air comes into play, we see the the feather and ball bearing will not fall at the same rate because they have different cross sectional areas. The following video shows a feather and ball bearing being dropped in both scenarios.
Where <math>C</math> is the numerical drag coefficient which is dependent on the shape of the object, <math> \rho </math> is the density of air, <math> A </math> is the cross sectional area of the object, and <math> v </math> is its velocity. The vectors and sign enforce the correct direction of the force. Naturally, these coefficients vary greatly between a feather and a ball, and this is why in normal experience they fall at a substantially different rate:


[[File:ballfeather2.jpg |link:https://www.youtube.com/watch?v=4z8g8OSOMzY ]]
[[File:ballfeather2.jpg |link:https://www.youtube.com/watch?v=4z8g8OSOMzY ]]


As stated above, the force of air on a falling object is also dependent on the speed of a falling object.  In that respect, we come to discuss terminal velocity.  The force of air increases quadraticly with the speed of a falling object, so while the force of gravity remains constant, the force of air resistance will increase until the two forces perfectly cancel each other out and the net force is zero.  At this point, the acceleration of an object is zero and the object has reached terminal velocity. You may ask "Why will the force of air not exceed the force of gravity?".  This is because the force of air only continues to increase as the speed of the falling object increases and as the magnitude of the net force decreases, the speed of the object will approach being constant.  Therefor, the magnitude of the force of air will also approach being constant.  An object's terminal velocity can be defined by the following equation:
One of the important features of this equation is the dependence upon the velocity of the object: since the force of air depends on the square of the velocity, while the force of gravity remains constant, the force of air resistance will increase until the two forces cancel each other out and the net force is zero.  At this point, the acceleration of an object is zero and the object has reached terminal velocity. An object's terminal velocity is defined by:
 
[[File:terminalvelocity.gif]]
 
==Where does that energy go?==


When we think of the energy of a falling object from the stance of a point-particle system, it will seem that some of the energy will disappear.  When a falling object reaches terminal velocity, its kinetic energy remains constant while its potential energy due to gravity decreases.  So, where does this energy go?  We can now think of the falling object as an extended system and see that this energy get converted to internal energy as heat.  The friction between the air and the falling object creates heat that takes the form of the ''lost'' energy.  In a vacuum, this would not happen.  The gravitational and kinetic energy of an object in a vacuum would vary inversely with one another.
<math> v_t = \sqrt{\frac{2mg}{C\rho A}} </math>


===Computational Modelling===
Using the same computational techniques discussed in [[Fundamentals of Iterative Prediction with Varying Force]] and utilized in [[Simple Harmonic Motion]] and [[Iterative Prediction of Spring-Mass System]], it is simply necessary to define and input the newly defined force of air resistance. This is done so [https://colab.research.google.com/drive/1617NfftFpRj7BiZZFJZDI731MHC-J_q4#scrollTo=OS2_0AR6gW81 here] using numpy, and may also be done with VPython.
<!---
===A Graphical Interpretation===
===A Graphical Interpretation===


Line 58: Line 54:
[[File:Energy_air.png|thumb|center|1100x510px]]
[[File:Energy_air.png|thumb|center|1100x510px]]


===Examples===
--->
 
==Examples==
===Simple===
Compute the drag due to air resistance (assume quadratic drag) for a spherical object (at low speeds and normal scales, a sphere has a coefficient of drag of approximately <math> C_D = 0.47 </math>), with a cross sectional area of <math> 1 \; m^2 </math>, in air at STP (<math> \rho = 1.225 \; kg/m^3 </math>), travelling at <math> 10 \; m/s </math>.
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="font-weight:bold;line-height:1.6;">Solution</div>
<div class="mw-collapsible-content">
 
We plug this into the standard equation for quadratic drag:
 
<math> \vec{F}_D = -\frac{1}{2} C_D A \rho v^2 \hat{v} </math>
 
When we substitute the values, we find that
 
<math> \vec{F}_D = -\frac{1}{2} \cdot(0.47)\cdot(1 \; m^2) \cdot (1.225 \; kg/m^3) \cdot (10 \; m/s)^2 \hat{v} = 28.7875 \; N </math>
 
From the vectors, this force is directed opposite the direction of motion.
 
</div></div>
 
===Middling===
Assume the object described above has a mass of <math> 4 \; kg </math>: what is the terminal velocity? If it instead had a mass of <math> 16 \; kg </math>, what would the new terminal velocity be?
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="font-weight:bold;line-height:1.6;">Solution</div>
<div class="mw-collapsible-content">
 
For clarity's sake, let's rederive the equation for terminal velocity by setting the force of gravity equal to the force of drag:
 
<math> |F_D| = |F_G| \Rightarrow \frac{C_D A \rho v^2}{2} = m g </math>
 
Solving this for <math> v </math> gives
 
<math> v = \sqrt{\frac{2 m g}{C_D A \rho}}</math>
 
Here we have discarded the plus or minus sign, and simply choose the appropriate sign at the end based on the vectors. Now, let's plug in our values:
 
<math> v = \sqrt{\frac{(2)(4\;kg)(9.8\;m/s^2)}{(0.47)(1)(1.225)}} = 11.67 \; m/s </math>
 
This then is the terminal velocity. We can repeat this computation for the new mass, but there is actually an easier way: the mass has increased by a factor of 4, and the equation for terminal velocity depends on the square root of the mass, so the terminal velocity will double, going to <math> 23.34 \; m/s </math>
 
</div></div>
 
===Difficult===
Using an iterative prediction program, find the distance traveled by the <math> 4 \; kg </math> object described above after <math> 30 \; s </math>. Calculate how far it would have gone if it traveled the entire distance at terminal velocity. What does this number tell us about how quickly it reached terminal velocity? Check a graph of velocity versus time to estimate what that time was (it's also pretty useful for your intuition to look at it generally). Next, think about whether the discrepancy between the constant speed assumption and the actual case would have been larger or smaller for the <math> 16 \; kg </math> object, and explain your reasoning. Check the answer with an iterative prediction program.
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="font-weight:bold;line-height:1.6;">Solution</div>
<div class="mw-collapsible-content">
 
First, using a program such as [https://colab.research.google.com/drive/1617NfftFpRj7BiZZFJZDI731MHC-J_q4#scrollTo=OS2_0AR6gW81 this], we may find that the object will travel about <math> 340 \;m</math> (your result may vary based on your time step width, and if you are using a different program which converges at a different rate; this computation was done with a time step width of <math> 0.001 \; s</math>). If we assume that the object traveled the entire distance at terminal velocity, then we would have, using the result from above, that it traveled <math> (11.67 \; m/s)(30 \; s) = 350 \; m</math>. This discrepancy is fairly small, so it indicates that the object reached terminal velocity fairly quickly. When we check the graph, we see that it had reached terminal velocity within the first 4 seconds, so this logic checks out.
 
Now, let's think about what happens when the mass increases. We know that the terminal velocity will increase by a factor of two, so the object will have to have more acceleration to reach it. Since drag does not depend directly on mass, it will not be varied directly. However, the change in the velocity will affect the drag over time, so we don't expect the duration of the transient to fully double. Checking the simulation, we find that the object falls <math> 662 \; m </math> in <math> 30 \; s</math>, whereas in the constant approximation we would expect it to fall <math> 700 \; m </math>. Thus the net discrepancy has quadrupled, and the relative discrepancy (percent error) has slightly less than doubled. Thinking about this physically, we are basically asking what happened if we increased the density of the object - we have changed its mass without changing surface area after all - and it makes sense physically that a feather reaches terminal velocity much faster - and therefore is much closer to the constant speed approximation - than a bowling ball.
 
</div></div>


<!---
'''Skydiver''': Think of a free-falling skydiver. When he/she is falling with their arms and legs stretched out like a star, they will accelerate until he or she reaches their terminal velocity.  Now, what would happen if the free-faller pulled in his/her arms and legs and leans forward so that their body is more parallel with their free-fall?  From our definition of terminal velocity defined above, we know that this speed is inversely dependent on the surface area of the falling object.  So, we can infer that the skydiver would speed up, because when he/she bring their arms and legs in, they decrease their surface area perpendicular to the fall and therefor increase their terminal velocity.     
'''Skydiver''': Think of a free-falling skydiver. When he/she is falling with their arms and legs stretched out like a star, they will accelerate until he or she reaches their terminal velocity.  Now, what would happen if the free-faller pulled in his/her arms and legs and leans forward so that their body is more parallel with their free-fall?  From our definition of terminal velocity defined above, we know that this speed is inversely dependent on the surface area of the falling object.  So, we can infer that the skydiver would speed up, because when he/she bring their arms and legs in, they decrease their surface area perpendicular to the fall and therefor increase their terminal velocity.     


Line 67: Line 118:


[[File:Reentry2.jpg|thumb|center|600x310px]]
[[File:Reentry2.jpg|thumb|center|600x310px]]
--->


==Connectedness==
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is this topic connected to something that you are interested in?<p>I have always been interested in skydiving and this topic is a vital concept for the spot. For example, the way a skydiver positions their body determines how fast they will fall.  Although it may seem easy to reposition your body mid-air, at such high velocities it takes very slow calculated movements so that you do not start plummeting out of control.  </p>
I have always been interested in skydiving and this topic is a vital concept for the spot. Just as in the example above, the way a skydiver positions their body determines how fast they will fall.  Although it may seem easy to reposition your body mid-air, at such high velocities it takes very slow calculated movements so that you do not start plummeting out of control.   
#How is it connected to your major?<p>As a chemical engineer, I may encounter having to develop materials that will be used in free fall.  If I am helping develop the metal coating for a spacecraft or vessel that will free fall to Earth's surface at high velocities, I will need to ensure that this material has an appropriate heat capacity to withstand the friction from the air. </p>
#How is it connected to your major?
#Is there an interesting industrial application?<p>Although this is not quite an industrial application, the concept of terminal velocity is very important for the military when they perform air drops.  In a war zone, supplies may need to be delivered to civilians and military forces behind enemy lines.  To do so, very careful calculations must be made based on the speed of the aircraft making the delivery, the sturdiness of the material the containers are made of, and when the parachutes should be deployed.  If anything with the calculations is off, the packages may end up miles away from the target zone, or may be shot down if the parachute is deployed too early.</p>
As a chemical engineer, I may encounter having to develop materials that will be used in free fall.  If I am helping develop the metal coating for a spacecraft or vessel that will free fall to Earth's surface at high velocities, I will need to ensure that this material has an appropriate heat capacity to withstand the friction from the air.  
#Is there an interesting industrial application?
Although this is not quite an industrial application, the concept of terminal velocity is very important for the military when they perform air drops.  In a war zone, supplies may need to be delivered to civilians and military forces behind enemy lines.  To do so, very careful calculations must be made based on the speed of the aircraft making the delivery, the sturdiness of the material the containers are made of, and when the parachutes should be deployed.  If anything with the calculations is off, the packages may end up miles away from the target zone, or may be shot down if the parachute is deployed too early.


==History==
==History==
 
Understanding air resistance was a matter long complicated by its ubiquity. Aristotle recognized the presence of air and identified the presence of resistance, and Archimedes connected it to his knowledge of other fluids
Thermodynamics was brought up as a science in the 18th and 19th centuries.  However, it was first brought up by Galilei, who introduced the concept of temperature and invented the first thermometer. G. Black first introduced the word 'thermodynamics'. Later, G. Wilke introduced another unit of measurement known as the calorie that measures heat.  The idea of thermodynamics was brought up by Nicolas Leonard Sadi Carnot.  He is often known as "the father of thermodynamics".  It all began with the development of the steam engine during the Industrial Revolution. He devised an ideal cycle of operation.  During his observations and experimentations, he had the incorrect notion that heat is conserved, however he was able to lay down theorems that led to the development of thermodynamics.  In the 20th century, the science of thermodynamics became a conventional term and a basic division of physics. Thermodynamics dealt with the study of general properties of physical systems under equilibrium and the conditions necessary to obtain equilibrium.
<ref> https://www.centennialofflight.net/essay/Theories_of_Flight/early_aero/TH3.htm </ref>, but neither effectively quantified it. Leonardo Da Vinci made some interesting developments, but his work was largely ignored, and so the next substantial improvement in understanding came with Galileo, who recognized the dependence of drag upon the density of the fluid. Next, Edme Mariotte and Christiaan Huygens separately determined the quadratic dependence on velocity, while Newton derived the dependence on surface area. The coefficient <math> C </math>, which incorporates the geometry of objects, is dependent on many factors in the fluid flow, and remains difficult to compute for complex objects or extreme conditions to this day <ref> https://www.grc.nasa.gov/www/k-12/airplane/drageq.html </ref>, due to the complexity of turbulent flows and other non-linear phenomena.


== See also ==
== See also ==
 
*[[Fundamentals of Iterative Prediction with Varying Force]]
Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
*[[Net Force]]
*[[Projectile Motion]]
*[[Speed vs Velocity]]


===Further reading===
===Further reading===


Books, Articles or other print media on this topic
*Anderson, John David (1997). A History of Aerodynamics and its Impact on Flying machines.
*Matter and Interactions, 4th Edition


===External links===
===External links===
[http://regentsprep.org/regents/physics/phys01/terminal/default.htm The Physics Zone]
*[http://www.britannica.com/science/terminal-velocity Encyclopedia Britannica]
[http://www.britannica.com/science/terminal-velocity Britanica Online]
*[https://www.grc.nasa.gov/www/k-12/airplane/termv.html NASA]
[https://www.grc.nasa.gov/www/k-12/airplane/termv.html NASA]
 
Internet resources on this topic


==References==
==References==


http://hyperphysics.phy-astr.gsu.edu/hbase/airfri2.html
<references/>
http://hypertextbook.com/facts/JianHuang.shtml
http://www.space-propulsion.com/spacecraft-propulsion/showcase/atmospheric-re-entry-demonstrator.html


[[Category:Interactions]]
[[Category:Interactions]]

Latest revision as of 15:38, 6 August 2019

Claimed by cshimkus3

Because air resistance acts to oppose the movement of an object, and grows stronger the faster the object is moving, the object will eventually reach an equilibrium in which the force of air resistance is exactly equal and opposite to the force of gravity, so that there is no net force on the object. The speed at which this occurs can be computed algebraically, while the transitory stage as the object approaches this velocity requires (when working within the scope of this course) the use of computational methods.

Main Idea

In Projectile Motion, we considered the motion of an object under the influence of a constant gravitational force [math]\displaystyle{ g = 9.8 \; m/s^2 }[/math], an approximation which is essentially accurate on the Earth's surface (the more accurate understanding, provided by Newton, may be found in Gravitational Force). However, we did not take into account a very important factor, because in everyday life, objects in motion do not stay in motion: this is because they are feeling the effects of air resistance (and, if they are in contact with other objects, friction). If, on the other hand, and object falls in a vacuum, it can be observed to have the same acceleration regardless of its mass or size. In the following video, a feather and a ball bearing are dropped inside a vacuum, and one may observe that they fall at exactly the same rate. (Click on the picture)

Mathematical Model

The friction due to air is a non-constant force on a falling object, and is determined by a number of factors. The force of air on a falling object is defined as follows[1]:

[math]\displaystyle{ \vec{F}_{drag} = -\frac{1}{2} C \rho A v^2 \hat{v} }[/math]

Where [math]\displaystyle{ C }[/math] is the numerical drag coefficient which is dependent on the shape of the object, [math]\displaystyle{ \rho }[/math] is the density of air, [math]\displaystyle{ A }[/math] is the cross sectional area of the object, and [math]\displaystyle{ v }[/math] is its velocity. The vectors and sign enforce the correct direction of the force. Naturally, these coefficients vary greatly between a feather and a ball, and this is why in normal experience they fall at a substantially different rate:

link:https://www.youtube.com/watch?v=4z8g8OSOMzY

One of the important features of this equation is the dependence upon the velocity of the object: since the force of air depends on the square of the velocity, while the force of gravity remains constant, the force of air resistance will increase until the two forces cancel each other out and the net force is zero. At this point, the acceleration of an object is zero and the object has reached terminal velocity. An object's terminal velocity is defined by:

[math]\displaystyle{ v_t = \sqrt{\frac{2mg}{C\rho A}} }[/math]

Computational Modelling

Using the same computational techniques discussed in Fundamentals of Iterative Prediction with Varying Force and utilized in Simple Harmonic Motion and Iterative Prediction of Spring-Mass System, it is simply necessary to define and input the newly defined force of air resistance. This is done so here using numpy, and may also be done with VPython.

Examples

Simple

Compute the drag due to air resistance (assume quadratic drag) for a spherical object (at low speeds and normal scales, a sphere has a coefficient of drag of approximately [math]\displaystyle{ C_D = 0.47 }[/math]), with a cross sectional area of [math]\displaystyle{ 1 \; m^2 }[/math], in air at STP ([math]\displaystyle{ \rho = 1.225 \; kg/m^3 }[/math]), travelling at [math]\displaystyle{ 10 \; m/s }[/math].

Solution

We plug this into the standard equation for quadratic drag:

[math]\displaystyle{ \vec{F}_D = -\frac{1}{2} C_D A \rho v^2 \hat{v} }[/math]

When we substitute the values, we find that

[math]\displaystyle{ \vec{F}_D = -\frac{1}{2} \cdot(0.47)\cdot(1 \; m^2) \cdot (1.225 \; kg/m^3) \cdot (10 \; m/s)^2 \hat{v} = 28.7875 \; N }[/math]

From the vectors, this force is directed opposite the direction of motion.

Middling

Assume the object described above has a mass of [math]\displaystyle{ 4 \; kg }[/math]: what is the terminal velocity? If it instead had a mass of [math]\displaystyle{ 16 \; kg }[/math], what would the new terminal velocity be?

Solution

For clarity's sake, let's rederive the equation for terminal velocity by setting the force of gravity equal to the force of drag:

[math]\displaystyle{ |F_D| = |F_G| \Rightarrow \frac{C_D A \rho v^2}{2} = m g }[/math]

Solving this for [math]\displaystyle{ v }[/math] gives

[math]\displaystyle{ v = \sqrt{\frac{2 m g}{C_D A \rho}} }[/math]

Here we have discarded the plus or minus sign, and simply choose the appropriate sign at the end based on the vectors. Now, let's plug in our values:

[math]\displaystyle{ v = \sqrt{\frac{(2)(4\;kg)(9.8\;m/s^2)}{(0.47)(1)(1.225)}} = 11.67 \; m/s }[/math]

This then is the terminal velocity. We can repeat this computation for the new mass, but there is actually an easier way: the mass has increased by a factor of 4, and the equation for terminal velocity depends on the square root of the mass, so the terminal velocity will double, going to [math]\displaystyle{ 23.34 \; m/s }[/math]

Difficult

Using an iterative prediction program, find the distance traveled by the [math]\displaystyle{ 4 \; kg }[/math] object described above after [math]\displaystyle{ 30 \; s }[/math]. Calculate how far it would have gone if it traveled the entire distance at terminal velocity. What does this number tell us about how quickly it reached terminal velocity? Check a graph of velocity versus time to estimate what that time was (it's also pretty useful for your intuition to look at it generally). Next, think about whether the discrepancy between the constant speed assumption and the actual case would have been larger or smaller for the [math]\displaystyle{ 16 \; kg }[/math] object, and explain your reasoning. Check the answer with an iterative prediction program.

Solution

First, using a program such as this, we may find that the object will travel about [math]\displaystyle{ 340 \;m }[/math] (your result may vary based on your time step width, and if you are using a different program which converges at a different rate; this computation was done with a time step width of [math]\displaystyle{ 0.001 \; s }[/math]). If we assume that the object traveled the entire distance at terminal velocity, then we would have, using the result from above, that it traveled [math]\displaystyle{ (11.67 \; m/s)(30 \; s) = 350 \; m }[/math]. This discrepancy is fairly small, so it indicates that the object reached terminal velocity fairly quickly. When we check the graph, we see that it had reached terminal velocity within the first 4 seconds, so this logic checks out.

Now, let's think about what happens when the mass increases. We know that the terminal velocity will increase by a factor of two, so the object will have to have more acceleration to reach it. Since drag does not depend directly on mass, it will not be varied directly. However, the change in the velocity will affect the drag over time, so we don't expect the duration of the transient to fully double. Checking the simulation, we find that the object falls [math]\displaystyle{ 662 \; m }[/math] in [math]\displaystyle{ 30 \; s }[/math], whereas in the constant approximation we would expect it to fall [math]\displaystyle{ 700 \; m }[/math]. Thus the net discrepancy has quadrupled, and the relative discrepancy (percent error) has slightly less than doubled. Thinking about this physically, we are basically asking what happened if we increased the density of the object - we have changed its mass without changing surface area after all - and it makes sense physically that a feather reaches terminal velocity much faster - and therefore is much closer to the constant speed approximation - than a bowling ball.


Connectedness

  1. How is this topic connected to something that you are interested in?

    I have always been interested in skydiving and this topic is a vital concept for the spot. For example, the way a skydiver positions their body determines how fast they will fall. Although it may seem easy to reposition your body mid-air, at such high velocities it takes very slow calculated movements so that you do not start plummeting out of control.

  2. How is it connected to your major?

    As a chemical engineer, I may encounter having to develop materials that will be used in free fall. If I am helping develop the metal coating for a spacecraft or vessel that will free fall to Earth's surface at high velocities, I will need to ensure that this material has an appropriate heat capacity to withstand the friction from the air.

  3. Is there an interesting industrial application?

    Although this is not quite an industrial application, the concept of terminal velocity is very important for the military when they perform air drops. In a war zone, supplies may need to be delivered to civilians and military forces behind enemy lines. To do so, very careful calculations must be made based on the speed of the aircraft making the delivery, the sturdiness of the material the containers are made of, and when the parachutes should be deployed. If anything with the calculations is off, the packages may end up miles away from the target zone, or may be shot down if the parachute is deployed too early.

History

Understanding air resistance was a matter long complicated by its ubiquity. Aristotle recognized the presence of air and identified the presence of resistance, and Archimedes connected it to his knowledge of other fluids [2], but neither effectively quantified it. Leonardo Da Vinci made some interesting developments, but his work was largely ignored, and so the next substantial improvement in understanding came with Galileo, who recognized the dependence of drag upon the density of the fluid. Next, Edme Mariotte and Christiaan Huygens separately determined the quadratic dependence on velocity, while Newton derived the dependence on surface area. The coefficient [math]\displaystyle{ C }[/math], which incorporates the geometry of objects, is dependent on many factors in the fluid flow, and remains difficult to compute for complex objects or extreme conditions to this day [3], due to the complexity of turbulent flows and other non-linear phenomena.

See also

Further reading

  • Anderson, John David (1997). A History of Aerodynamics and its Impact on Flying machines.
  • Matter and Interactions, 4th Edition

External links

References