Lorentz Force: Difference between revisions
Line 10: | Line 10: | ||
<math> \vec{F}_{Lorentz} = q\vec{E} + q\vec{v} ⨯ \vec{B}</math> where '''qE''' is the electric force and '''qv x B''' is the magnetic force. | <math> \vec{F}_{Lorentz} = q\vec{E} + q\vec{v} ⨯ \vec{B}</math> where '''qE''' is the electric force and '''qv x B''' is the magnetic force. | ||
===A Computational Model=== | |||
[[File:Lorentz Force.png]] | [[File:Lorentz Force.png]] |
Revision as of 22:57, 4 December 2015
Claimed by Matt Harding --matt_harding23
The Main Idea
The Lorentz Force is the combination of the Electric and Magnetic Forces. Basically the Lorentz Force is applied as a net force on a particle or number of particles when both electric and magnetic fields are present.
A Mathematical Model
[math]\displaystyle{ \vec{F}_{Lorentz} = q\vec{E} + q\vec{v} ⨯ \vec{B} }[/math] where qE is the electric force and qv x B is the magnetic force.
A Computational Model
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page