Hooke's Law: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 37: Line 37:


===Question 2===
===Question 2===
QUESTION:
If 223 N stretches a spring 12.7 cm, how much stretch can we expect to result from a force of 534 N?
SOLUTION
<br>223N/534N=12.7cm/x
<br>x=30.4cm
===Question 3===
===Question 3===



Revision as of 18:29, 27 November 2015

This resource page addresses Hooke's Law. (Claimed by brapsas3)

The Main Idea

Hooke's law is a principle that states that some force F needed to compress or extend a spring by some distance s is directly proportional to that distance.

A Mathematical Model

This system can be expressed as F = ks, where k is some constant factor that is characteristic of the spring.

A Computational Model

A vpython visualization of Hooke's Law

History

Hooke's law is named after the 17th century British physicist Robert Hooke. Hooke first publicly 'stated' the law in 1660, initially concealing it in the Latin anagram "ceiiinosssttuv," which represented the phrase Ut tensio, sic vis — "As the extension, so the force." However, this solution was not published until 1678.

Hooke's equation also applies to many other situations where some elastic body is being deformed, and the ball-spring model is often used as the basis for many contact interactions.

Problem Set

A few sample problems and their solutions.

Question 1

QUESTION:
What is the force required to stretch a spring whose constant value is 100 N/m by an amount of 0.50 m?

SOLUTION:
Using the formula F=ks solve the question
F=force(N)
k=force constant(N/m)
s=stretch or compression(m)

F=(100)(0.50) F=50 N

Question 2

QUESTION: If 223 N stretches a spring 12.7 cm, how much stretch can we expect to result from a force of 534 N?

SOLUTION
223N/534N=12.7cm/x
x=30.4cm

Question 3

See also

Robert Hooke
Spring Potential Energy
Tension
Young's Modulus

Further reading

Elasticity and Hooke's Law

What is Hooke's Law?

Encyclopedia Brittanica: Hooke's Law

External links

Doodle Science provides a brief run through of Hooke's Law.

An alternate explanation of Hooke's Law with a sample problem set.

References

This section contains the the references you used while writing this page