Electric Potential: Difference between revisions
Line 59: | Line 59: | ||
'''Explanation:''' | '''Explanation:''' | ||
<math>∆\vec{l} = | <math>∆\vec{l}</math> = <0.2,0,0>m - <-0.4,0,0>m = <0.6,0,0>m | ||
<math>∆{V} = -({E}_{x}∆{x} + {E}_{y}∆{y} + {E}_{z}∆{z})</math> | <math>∆{V} = -({E}_{x}∆{x} + {E}_{y}∆{y} + {E}_{z}∆{z})</math> |
Revision as of 16:48, 17 April 2016
AUTHOR: Rmohammed7
REVISED BY: HAYOUNG KIM (SPRING 2016)
This page discusses the Electric Potential and examples of how it is used.
The Main Idea
Electric potential is a rather difficult concept as it is usually accompanied by other topics. For example, electric potential is not the same as electric potential energy as electric potential is defined as the total potential energy per charge and is basically used to describe the electric field's effect at a certain location. In other words, electric potential is purely dependent on the electric field (whether it is uniform or nonuniform) and the location, whereas the electric potential energy also depends on the amount of charge the object in the system is experiencing. Also, although electric potential is an important topic to learn, most problems encountered will not ask to find just the "electric potential," instead, questions will most likely ask for the "electric potential difference." This is because electric potential is measured using different locations, or more specifically pathways between the different locations, so instead of determining the electric potential of location A and the electric potential of final location B, it would make more sense to determine the "difference in electric potential between locations A and B."
A Mathematical Model
Like mentioned in the Main Idea, instead of electric potential, in most cases, electric potential difference is needed to be found. The general equation for the potential difference is [math]\displaystyle{ ∆{{U}_{electric}} = {q} * ∆{V} }[/math].
[math]\displaystyle{ ∆{{U}_{electric}} }[/math] is the electric potential energy, which is measured in Joules (J). q is the charge of the particle moving through the path of the electric potential difference, which is measured in coulombs (C). ∆V is the electric potential difference, which is measured in Joules per Coulomb (J/C), or just Volts (V).
Aside from the general equation, the electric potential difference can also be found in other ways. The potential difference in an uniform field is [math]\displaystyle{ ∆{V} = -({E}_{x}∆{x} + {E}_{y}∆{y} + {E}_{z}∆{z}) }[/math], which can also be written as [math]\displaystyle{ ∆{V} = -\vec{E}·∆\vec{l} }[/math].
∆V is the electric potential difference, which is measured in Joules per Coulomb (J/C), or just Volts (V). E is the electric field, which is measured in Newtons per Coulomb (N/C), and it is important to note that the different direction components of the electric field are used in the equation. l (or the x, y, z) is the distance between the two described locations, which is measured in meters, and x, y, and z, are the different components of the difference.
The electric potential difference in a nonuniform field is [math]\displaystyle{ ∆{V} = -∑ \vec{E}·∆\vec{l} }[/math]. The different parts in this particular equation resembles the equation for the potential difference in an uniform field, except that with the nonuniform field, the potential difference in the different fields are summed up. This situation can be quite easy, but when the system gets difficult, first, choose a path and divide it into smaller pieces of [math]\displaystyle{ ∆\vec{l} }[/math]; second, write an expression for [math]\displaystyle{ ∆{V} = -\vec{E}·∆\vec{l} }[/math] of one piece; third, add up the contributions of all the pieces; last, check the result to make sure the magnitude, direction, and units make sense.
Aside from just calculating the value of the electric potential difference, determining the sign is also quite crucial to be successful. If the path being considered is in the same direction as the electric field, then the sign with be negative (-), or the potential is decreasing. If the path being considered is in the opposite direction as the electric field, then the sign will be positive (+), or the potential is increasing. If the path being considered is perpendicular to the electric field, then the potential difference will just be zero and have no direction. With these simple tips, the direction of the potential difference can be rechecked with the answer calculated using vectors.
Also, when working with different situations, it is nice to keep in mind that in a conductor, the electric field is zero. Therefore, the potential difference is zero as well. In an insulator, the electric field is [math]\displaystyle{ {E}_{applied} / K }[/math] where K is the dielectric constant. Also, the round trip potential difference is always zero, or in other words, if you start from a certain point and end at the same point, then, the potential difference will be zero.
A Computational Model
Click on the link to see Electric Potential through VPython!
Make sure to press "Run" to see the principle in action!
Watch this video for a more visual approach!
Electric Potential: Visualizing Voltage with 3D animations
Examples
Simple
In a capacitor, the negative charges are located on the left plate, and the positive charges are located on the right plate. Location A is at the left end of the capacitor, and Location B is at the right end of the capacitor, or in other words, Location A and B are only different in terms of their x component location. The path moves from A to B. What is the direction of the electric field? Is the potential difference positive or negative? [Hint: Draw a picture!]
Answer: The electric field is to the left. The potential difference is increasing, or is positive.
Explanation: The electric field always moves away from the positive charge and towards the negative charge, which means the electric field in this example is to the left. Because the direction and the electric field and the direction of the path are opposite, the potential difference is increasing, or is positive.
Middling
Calculate the difference in electric potential between two locations A, which is at <-0.4, 0,0>m, and B, which is at <0.2,0,0>m. The electric field in the location is <500,0,0> N/C.
Answer: -300V
Explanation:
[math]\displaystyle{ ∆\vec{l} }[/math] = <0.2,0,0>m - <-0.4,0,0>m = <0.6,0,0>m
[math]\displaystyle{ ∆{V} = -({E}_{x}∆{x} + {E}_{y}∆{y} + {E}_{z}∆{z}) }[/math]
[math]\displaystyle{ ∆{V} = \lt -(500 N/C * 0.6 m + 0*0 + 0*0) }[/math]
[math]\displaystyle{ ∆{V} = -300 V }[/math]
Difficult
A proton is located at the origin. Location C is 1e-10 m away from the proton, and location D is 2e-8 m from the proton, along a straight line radially outward. First, find the potential difference from C to D. Then find how much work would be required to move an electron from location C to D.
Answer: -14.3 V ; 2.3e-18 J
Explanation: (1) [math]\displaystyle{ ∆{V} = -\int_C^D {E}_{x} \, dx }[/math]
Connectedness
- How is this topic connected to something that you are interested in?
I am interested in robotic systems and building circuit boards/ electrical systems for manufacturing robots. While studying this section in the book, I was able to connect back many of the concepts and calculations back to robotics and electrical component of autmated systems.
- How is it connected to your major?
I am a Mechanical Engineering major, so I will be dealing with electrical components of machines when I work. Therefore, I have to know these certain concepts such as electric potential in order to fully understand how they work and interact.
- Is there an interesting industrial application?
Electrical Potential is used to find the voltage across a path. This is useful when working with circuit comppnents and attempting to manupulate the power output or current throught a component.
History
The idea of electric potential kind of started with Ben Franklin and his experiments in the 1740s. He began to understand the flow of electricity, which eventually paved the path towards explaining electric potential and potential difference. Scientist finally began understading how electric fields were actually affecting the surrounding environment and other charges. Benjamin Franklin first shocked himself in 1746, while conducting experiments on electricity with found objects from around his house. Six years later 261 years ago, the founding father flew a kite attached to a key and a silk ribbon in a thunderstorm and effectively trapped lightning in a jar. The experiment is now seen as a watershed moment in mankind's venture to channel a force of nature so abstract.
By the time Franklin started experimenting with electricity, he'd already found fame and fortune as the author of Poor Richard's Almanack and was starting to get into science. Electricity wasn't a very well understood phenomenon at that point, though, so Franklin's research proved to be fairly foundational. The early experiments, experts believe, were inspired by other scientists' work and the shortcomings therein.
That early brush with the dangers of electricity left an impression on Franklin. He described the sensation as "a universal blow throughout my whole body from head to foot, which seemed within as well as without; after which the first thing I took notice of was a violent quick shaking of my body." However, it didn't scare him away. In the handful of years before his famous kite experiment, Franklin contributed everything from designing the first battery designs to establishing some common nomenclature in the study of electricity.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Here are some cool articles about the topic [1]
References
This section contains the the references you used while writing this page
Youtube.com
Matter and Interactions: Electric and Magnetic Interactions Volume 2
Modern Physics Wiki