How to Create and Interpret Energy Diagrams: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
=== | ===Examples=== | ||
===Difficult=== | |||
creating energy graphs for different situations | |||
==Connectedness== | |||
#How is this topic connected to something that you are interested in? | |||
#How is it connected to your major? | |||
#Is there an interesting industrial application? | |||
== | ==History== | ||
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why. | |||
== | == See also == | ||
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context? | |||
=== | ===Further reading=== | ||
Books, Articles or other print media on this topic | |||
=== | ===External links=== | ||
Internet resources on this topic | |||
==References== | |||
This section contains the the references you used while writing this page | |||
[[Category:Energy]] | |||
==Connectedness== | ==Connectedness== |
Revision as of 12:51, 29 November 2015
Energy Diagrams
The Main Idea
Energy Diagrams are extremely useful for analyzing the interactions between two different objects. These diagrams can also be confusing if not properly understood. This page serves as a resource on how to construct and interpret energy diagrams. Let's get started!
A Mathematical Model
A Computational Model
Vpython is great for modeling this concept. Using vpython, we can model many different systems that have kinetic and potential energy. We can model a spacecraft orbiting the Earth, and we can create graphs to display the kinetic, potential, and kinetic+potential energies of this system. See this code for how to do this!
[Sample Vpython code:https://trinket.io/glowscript/4010e21bc3]
Examples
Difficult
creating energy graphs for different situations
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Thermodynamics was brought up as a science in the 18th and 19th centuries. However, it was first brought up by Galilei, who introduced the concept of temperature and invented the first thermometer. G. Black first introduced the word 'thermodynamics'. Later, G. Wilke introduced another unit of measurement known as the calorie that measures heat. The idea of thermodynamics was brought up by Nicolas Leonard Sadi Carnot. He is often known as "the father of thermodynamics". It all began with the development of the steam engine during the Industrial Revolution. He devised an ideal cycle of operation. During his observations and experimentations, he had the incorrect notion that heat is conserved, however he was able to lay down theorems that led to the development of thermodynamics. In the 20th century, the science of thermodynamics became a conventional term and a basic division of physics. Thermodynamics dealt with the study of general properties of physical systems under equilibrium and the conditions necessary to obtain equilibrium.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
https://www.grc.nasa.gov/www/k-12/airplane/thermo0.html http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thereq.html https://www.grc.nasa.gov/www/k-12/airplane/thermo2.html http://www.phys.nthu.edu.tw/~thschang/notes/GP21.pdf http://www.eoearth.org/view/article/153532/