Inertia: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
The other form of Newton's Second Law is <math>\vec{F}_{net} = m \vec{a}</math>. Solving for acceleration yields <math>\vec{a} = \frac{\vec{F}_{net}}{m}</math>. This shows the inverse relationship between mass and acceleration for a given net force. | The other form of Newton's Second Law is <math>\vec{F}_{net} = m \vec{a}</math>. Solving for acceleration yields <math>\vec{a} = \frac{\vec{F}_{net}}{m}</math>. This shows the inverse relationship between mass and acceleration for a given net force. | ||
==Inertial Reference Frame== | ==Inertial Reference Frame== | ||
==History== | |||
Before Newton's Laws of Motion came to prominence, models of motion were based on of the observation that objects on Earth always ended up in a resting state regardless of their mass and initial velocity. This was the result of [[Friction]]. Since friction is present for all macroscopic motion on earth, it was difficult for academics of the time to imagine that motion could exist without it, so it was not separated from the general motion of objects. However, this posed a problem: the perpetual motion of planets and other celestial bodies. Galileo Galilei was the first to propose that perpetual motion was actually the natural state of objects, and that forces such as friction were necessary to bring them to rest or otherwise change their velocities. | |||
Galileo performed an experiment with two ramps and a bronze ball. To begin, the two ramps were set up at the same angle of incline, facing each other. Galileo observed that if a ball was released on one of the ramps from a certain height, it would roll down that ramp and up the other and reach that same height. He then experimented with altering the angle of the second ramp. He observed that even when the second ramp was less steep than the first, the ball would reach the same height it was dropped from. (Today, this is known to be the result of conservation of energy.) Galileo reasoned that if the second ramp were removed entirely, and the ball rolled down the first ramp and onto a flat surface, it would never be able to reach the height it was dropped from, and would therefore never stopped moving if conditions were ideal. This led to his idea of inertia. | |||
==Connectedness== | ==Connectedness== |
Revision as of 16:15, 3 June 2019
This page defines and describes inertia.
The Main Idea
Inertia is the tendency of matter to resist change in Velocity. It is an inherent property of matter; the inertia of an object is directly proportional to its Mass and is in fact sometimes used to define mass. Newton's first law of motion states that the velocity of an object does not change unless there is an unbalanced force acting on it. This is a consequence of the object's inertia. When a net external force acts on an object, the object will accelerate, meaning its velocity will change over time. For a given force, the rate of change of velocity is inversely proportional to the mass of an object; more massive objects have more inertia and therefore experience slower changes in velocity for a given force.
"Inertia" is not to be confused with "moment of inertia", a related but different topic. The moment of inertia of an object is the tendency of an object to resist change in angular velocity. It is the rotational analogue for inertia. For more information about moments of inertia, see The Moments of Inertia.
A Mathematical Model
According to Newton's Second Law: the Momentum Principle, [math]\displaystyle{ \vec{F}_{net} = \frac{d\vec{p}}{dt} }[/math]. The more massive an object is, the less its velocity needs to change in order to achieve the same change in momentum in a given time interval.
The other form of Newton's Second Law is [math]\displaystyle{ \vec{F}_{net} = m \vec{a} }[/math]. Solving for acceleration yields [math]\displaystyle{ \vec{a} = \frac{\vec{F}_{net}}{m} }[/math]. This shows the inverse relationship between mass and acceleration for a given net force.
Inertial Reference Frame
History
Before Newton's Laws of Motion came to prominence, models of motion were based on of the observation that objects on Earth always ended up in a resting state regardless of their mass and initial velocity. This was the result of Friction. Since friction is present for all macroscopic motion on earth, it was difficult for academics of the time to imagine that motion could exist without it, so it was not separated from the general motion of objects. However, this posed a problem: the perpetual motion of planets and other celestial bodies. Galileo Galilei was the first to propose that perpetual motion was actually the natural state of objects, and that forces such as friction were necessary to bring them to rest or otherwise change their velocities.
Galileo performed an experiment with two ramps and a bronze ball. To begin, the two ramps were set up at the same angle of incline, facing each other. Galileo observed that if a ball was released on one of the ramps from a certain height, it would roll down that ramp and up the other and reach that same height. He then experimented with altering the angle of the second ramp. He observed that even when the second ramp was less steep than the first, the ball would reach the same height it was dropped from. (Today, this is known to be the result of conservation of energy.) Galileo reasoned that if the second ramp were removed entirely, and the ball rolled down the first ramp and onto a flat surface, it would never be able to reach the height it was dropped from, and would therefore never stopped moving if conditions were ideal. This led to his idea of inertia.
Connectedness
Scenario: Tablecloth Party Trick
A classic demonstration of inertia is a party trick in which a tablecloth is yanked out from underneath an assortment of dinnerware, which barely moves and remains on the table. The tablecloth accelerates because a strong external force- a person's arm- acts on it, but the only force acting on the dinnerware is kinetic friction with the sliding tablecloth. This force is significantly weaker, and if the tablecloth is pulled quickly enough, does not have enough time to impart a significant impulse on the dinnerware. This trick demonstrates the inertia of the dinnerware, which has an initial velocity of 0 and resists change in velocity.
See also
Newton's Laws and Linear Momentum