Head-on Collision of Equal Masses: Difference between revisions
Line 31: | Line 31: | ||
There are two possible solutions: ''p<sub>1xf</sub> =0'' or ''p<sub>2xf</sub> =0''. | There are two possible solutions: ''p<sub>1xf</sub> =0'' or ''p<sub>2xf</sub> =0''. | ||
If ''p<sub>1xf</sub> =0'', then object 1 came to a full stop. Based on the momentum equation ''p<sub>1xf</sub> + p<sub>2xf</sub> = p<sub>2xf</sub> = p<sub>1xi</sub>'', then object 2 now has the same momentum that object 1 used to have. There is a complete transfer of momentum from object 1 to object 2, and so | If ''p<sub>1xf</sub> =0'', then object 1 came to a full stop. Based on the momentum equation ''p<sub>1xf</sub> + p<sub>2xf</sub> = p<sub>2xf</sub> = p<sub>1xi</sub>'', then object 2 now has the same momentum that object 1 used to have. There is a complete transfer of momentum from object 1 to object 2, and so there is also a complete transfer of kinetic energy from object 1 to object 2. | ||
If ''p<sub>2xf</sub> =0'', then ''p<sub>1xf</sub> + p<sub>2xf</sub> = p<sub>1xf</sub> = p<sub>1xi</sub>'', and so object 1 keeps going, missing object 2. This won't happen if the carts are on the same track. It is not possible for both final momenta to be zero, since the total final momentum of the system must equal the nonzero total initial momentum of the system. | If ''p<sub>2xf</sub> =0'', then ''p<sub>1xf</sub> + p<sub>2xf</sub> = p<sub>1xf</sub> = p<sub>1xi</sub>'', and so object 1 keeps going, missing object 2. This won't happen if the carts are on the same track. It is not possible for both final momenta to be zero, since the total final momentum of the system must equal the nonzero total initial momentum of the system. | ||
Revision as of 23:02, 12 June 2019
Work in progress by mtikhonovsky3
Main Idea
A collision is a brief interaction between large forces. A head-on collision could be between two carts rolling or sliding on a track with low friction, billiard balls, hockey pucks, or vehicles hitting each other head-on.
In terms of the two carts of equal masses example, the two carts are the system. The Momentum Principle tells us that after the collision the total final momentum p1xf + p2xf must equal the initial total momentum p1xi. Before the collision, nonzero energy terms included the kinetic energy of cart 1, K1i, and the internal energies of both carts. After the collision there is an increase in the internal energy of both carts and kinetic energy of both carts, K1f + K2f.
A Mathematical Model
Head-on Collisions of Equal Masses can be based off the Fundamental Principle of Momentum:
- [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}{Δt} }[/math]
where p is the momentum of the system, F is the net force from the surroundings, Δt is the change in time for the process. Energy Principle:
- [math]\displaystyle{ {E}={Q}+{W} }[/math] where E is the total energy, Q is the heat given off, and W is the work done.
Based off of the Momentum Principle and the Energy Principle, we will explore Head-on Collisions of Equal Masses in two different scenarios: elastic and maximally inelastic (objects become stuck together).
1. Elastic Head-on Collisions of Equal Masses
Momentum Principle:
- [math]\displaystyle{ {p_{xf}}={p_{xi}}+{F_{net,x}}{Δt} }[/math]
- [math]\displaystyle{ {p_{1xf}}+{p_{2xf}}={p_{1xi}}+{0} }[/math]
Energy Principle:
- [math]\displaystyle{ {E_f}={E_i}+{W}+{Q} }[/math]
- [math]\displaystyle{ ({K_{1f}}+{E_{int1f}})+({K_{1f}}+{E_{int2f}})=({K_{1i}}+{E_{int1i}})+({K_{2i}}+{E_{int2i}})+{0}+{0} }[/math]
- [math]\displaystyle{ {K_{1f}}+{K_{2f}}={K_{1i}}+{0} }[/math]
Since K=p2/2m, we can combine the momentum and energy equations:
- [math]\displaystyle{ {\frac{p^{2}_{1xf}}{2m}}+{\frac{p^{2}_{2xf}}{2m}}= {\frac{(p_{1xf}+{p}_{2xf})^2}{2m}} }[/math]
- [math]\displaystyle{ {p^2_{1xf}}+{p^2_{2xf}}={p^2_{1xf}}+{2p_{1xf}p_{2xf}}+{p^2_{2xf}} }[/math]
- [math]\displaystyle{ {2p_{1xf}p_{2xf}}={0} }[/math]
There are two possible solutions: p1xf =0 or p2xf =0. If p1xf =0, then object 1 came to a full stop. Based on the momentum equation p1xf + p2xf = p2xf = p1xi, then object 2 now has the same momentum that object 1 used to have. There is a complete transfer of momentum from object 1 to object 2, and so there is also a complete transfer of kinetic energy from object 1 to object 2. If p2xf =0, then p1xf + p2xf = p1xf = p1xi, and so object 1 keeps going, missing object 2. This won't happen if the carts are on the same track. It is not possible for both final momenta to be zero, since the total final momentum of the system must equal the nonzero total initial momentum of the system.
2. Maximally Inelast Collision of Equal Masses
Momentum Principle:
- [math]\displaystyle{ {p_{1xf}}+{p_{2xf}}={p_{1xi}} }[/math]
- [math]\displaystyle{ {2p_{1xf}}={p_{1xi}} }[/math]
- [math]\displaystyle{ {p_{1xf}}={\frac{1}{2}}{p_{1xi}} }[/math]
The final speed of the stuck-together carts is half the initial speed:
- [math]\displaystyle{ {v_{f}}={\frac{1}{2}}{v_{i}} }[/math]
Final translational kinetic energy:
- [math]\displaystyle{ ({K_{1f}}+{K_{2f}})={2}({\frac{1}{2}}{m}{v^2_{f}}) }[/math]
- [math]\displaystyle{ ({K_{1f}}+{K_{2f}})={2}({\frac{1}{2}}{m}({\frac{1}{2}}{v_{i}})^2)={\frac{1}{4}}{m}{v^2_{i}} }[/math]
- [math]\displaystyle{ ({K_{1f}}+{K_{2f}})={\frac{K_{1i}}{2}} }[/math]
Energy Principle:
- [math]\displaystyle{ {K_{1f}}+{K_{2f}}+{E_{int,f}}={K_{1i}}+{E_{int,i}} }[/math]
- [math]\displaystyle{ {E_{int,f}}-{E_{int,i}}={K_{1i}}-({K_{1f}}+{K_{2f}}) }[/math]
- [math]\displaystyle{ {ΔE_{int}}={K_{1i}}-{\frac{K_{1i}}{2}} }[/math]
- [math]\displaystyle{ {ΔE_{int}}={\frac{K_{1i}}{2}} }[/math]
The Momentum Principle is still valid even though the collision is inelastic, and fundamental principles apply in all situations. The final kinetic energy of the system is only half of the original kinetic energy, which mean that the other half of the original kinetic energy has been dissipated into increased internal energy of the two carts.
From both examples, we know know: 1. If the collision is elastic, object 1 stops and object 2 moves with the speed object 1 used to have. 2. If the collision is maximally inelastic, the carts stick together and move with half the original speed. Half of the original kinetic energy is dissipated into increased internal energy.
A Computational Model
https://trinket.io/embed/glowscript/37540ee8e0
Examples
A 8 kg mass traveling at speed 18 m/s strikes a stationary 8 kg mass head-on, and the two masses stick together. What are the final speeds?
- [math]\displaystyle{ {m}{v_{1i}}+{m}{v_{2i}}={m}{v_{f}}+{m}{v_{f}} }[/math]
- [math]\displaystyle{ {m}{v_{1i}}+{m}({0})={2m}{v_{f}} }[/math]
- [math]\displaystyle{ {8 kg}({18m/s})={2}({8kg}){v_{f}} }[/math]
- [math]\displaystyle{ {144kg}{m/s}={16 kg}{v_{f}} }[/math]
- [math]\displaystyle{ {v_{f}}={9m/s} }[/math]
Connectedness
This as a real world application of billiard balls (playing pool). All the balls have equal mass, and one ball is shot towards the other one which is stationary. When collision occurs, the ball thta is hit will move at 90 angle from the direction the stricking ball comes. Keeping this mind and with a little practice one's level of playing billiard should increase.
See also
http://www.real-world-physics-problems.com/physics-of-billiards.html
http://archive.ncsa.illinois.edu/Classes/MATH198/townsend/math.html
Further reading
Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print.
External links
http://hyperphysics.phy-astr.gsu.edu/hbase/colsta.html
http://www.physicsclassroom.com/class/momentum/Lesson-2/The-Law-of-Action-Reaction-(Revisited)
References
Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print. This section contains the the references you used while writing this page