Velocity: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 71: Line 71:
There are two kinds of velocity in which one must consider: instantaneous velocity and average velocity.
There are two kinds of velocity in which one must consider: instantaneous velocity and average velocity.
[https://www.youtube.com/watch?v=Bxp0AWhs57g] does a good job explaining the difference between the two types of velocity
[https://www.youtube.com/watch?v=Bxp0AWhs57g] does a good job explaining the difference between the two types of velocity
===Instantaneous Velocity===
Instantaneous velocity is the speed and direction of an object at a particular instant. Mathematically, it is the derivative of the position function at a specific point in time.
Given the example: Each hour, and each time point in every hour has a different instantaneous velocity.
===Average Velocity===
Average velocity is the net displacement of an object, divided by the total travel time. It is the average of all instantaneous velocities. It is important to note that as <math>{\Delta\mathit{t}}</math> gets very small, the average velocity approaches the instantaneous velocity.
Given the example: The average velocity would be (230 miles/3 hours) = 76.67 mph north.


==Momentum==
==Momentum==

Revision as of 11:53, 1 August 2019

This page defines and describes velocity.

Main Idea

Velocity, denoted by the symbol [math]\displaystyle{ \vec{v} }[/math], is a vector quantity defined as the rate of change of position with respect to time. In calculus terms, it is the time derivative of the position vector. The magnitude of a velocity vector is speed, and the direction of the vector is the direction of travel. Velocity is an instantaneous value, so it may change over time. Several properties in physics, such as momentum and kinetic energy, are functions of velocity. The most commonly used metric unit for velocity is the meter per second (m/s).

A Mathematical Model

Instantaneous velocity [math]\displaystyle{ \vec{v} }[/math] is defined as:

[math]\displaystyle{ \vec{v} = \frac{d\vec{r}}{dt} }[/math]

where [math]\displaystyle{ \vec{r} }[/math] is a position vector and [math]\displaystyle{ t }[/math] is time.

Average Velocity

Since velocity is an instantaneous quantity, it can change over time. Over any given time interval, there is an average velocity value denoted [math]\displaystyle{ \vec{v}_{avg} }[/math]. The average acceleration over an interval of time [math]\displaystyle{ \Delta t }[/math] is given by

[math]\displaystyle{ \vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} }[/math].

As the duration of the time interval [math]\displaystyle{ \Delta t }[/math] becomes very small, the value of the average velocity over that time interval approaches the value of the instantaneous velocity at any point in time within that interval.

Derivative Relationships

Velocity is the time derivative of position:

[math]\displaystyle{ \vec{v}(t) = \frac{d\vec{r}(t)}{dt} }[/math].

Acceleration, in turn, is the time derivative of velocity:

[math]\displaystyle{ \vec{a}(t) = \frac{d\vec{v}(t)}{dt} }[/math]

Integral Relationships

Position is the time integral of velocity:

[math]\displaystyle{ \vec{r}(t) = \int \vec{v}(t) \ dt }[/math].

Velocity is, in turn, the time integral of acceleration:

[math]\displaystyle{ \vec{v}(t) = \int \vec{a}(t) \ dt }[/math].

Kinematic Equations

The kinematic equations can be derived from the derivative and integral relationships between acceleration, velocity, and displacement. For the equations and more information, view the Kinematics page.

In Physics

According to Newton's First Law of Motion, the velocity of an object must remain constant (whether that velocity is zero or nonzero) unless a force acts on it. Newton's Second Law: the Momentum Principle describes how velocity changes over time as a result of forces.

A Computational Model

In VPython simulations of physical systems, the Iterative Prediction algorithm is often used to move objects with specified velocities and evolve those velocities over time. The program below is an example of such a simulation. In this program, the ball's velocity is represented by a purple arrow.

Click here for velocity simulation

Click "view this program" in the top left corner to view the source code.

Example

A car takes 3 hours to make a 230-mile trip from Point A to Point B.

Hour 1 Hour 2 Hour 3
Velocity 80 mph north 90 mph north 60 mph north

There are two kinds of velocity in which one must consider: instantaneous velocity and average velocity. [1] does a good job explaining the difference between the two types of velocity

Momentum

Another application of velocity is within the realm of momentum and the Momentum Principle. momentum is defined as the mass of an object multiple by its vector velocity quantity. Like velocity momentum is a vector quantity. This quantity can be used in conjunction with change in time to see the amount of force applied on an object, and by extension its final location and velocity. This can be modeled iteratively through computer programs or be done in one calculation.

Some Examples

An Introductory Example

If a ball travels from location <2,4,6>m to <3,5,8>m in two seconds, what is its velocity?

Solution: :[math]\displaystyle{ \boldsymbol{\bar{v}} = \frac{\Delta\boldsymbol{r}}{\Delta\mathit{t}} }[/math] Delta r: <3,5,8>m-<2,4,6>m and delta t is equal to 2s, so velocity is equal to the vector <1,1,2>m/2s, which is equal to <0.5,0.5,1> m/s


A More Difficult Example

A car is moving with a velocity of <26,87,12> m/s. If the initial location of the car is at <0,0,0>m and the final location of the car is at <39,130.5, 18> m, how many seconds did the car travel?

Assuming a constant velocity, delta r is equal to the final location of the car, since the car began at the origin. By dividing the delta r by the given velocity, a total time of two seconds of travel can be found.


A Final Example with Application of Momentum

If a van has a mass of 1200 kilograms, and it is traveling with a velocity of magnitude 38 m/s, what is its momentum?

Its momentum is 45,600 kg*m/s. This can be obtained by multiplying the mass by the magnitude of the velocity.

Connectedness

Velocity is a very simple yet interesting concept in the way that it can be applied to many different parts of physics from something as simple as displacement. Velocity's sheer versatility as a concept and the number of things that can be derived from it, which include acceleration, momentum, and by extension, force and mass. Also because it can be related to force, it can be used, in conjunction with other types of forces to determine many things about systems.

Velocity is also of critical importance in calculating kinetic energy (0.5*m*v^2). Through understanding both the relationship between kinetic energy and velocity, as well as the resulting relationship between kinetic energy and total energy, concepts such as potential spring, gravitational, and electric energies may also be related back to velocity. As Physics 1 deals primarily with motion and predicting future motion, velocity is an absolutely critical tool, as it can often be used to analyze changes of external forces and predict future movement.

Velocity relates to my career aspirations in a rather interesting way. Because I plan on trying to become a trauma doctor, its easy to see the difference between high and low velocity impacts of objects of the same mass. If a low mass object is accelerating at a high enough velocity, the ramifications of its impact with the body could be vastly different than an object with a low velocity.

An industrial application of velocity could be seen in cars and the limits of their engines. The limit to which a car engine can perform can be tested in various ways, one of them being velocity. This could be one reason why you don't see normal cars with speed past around 130, the engine simply can't take it. The knowledge of the limit of a car engine can be tested using velocity to help ensure a safe driving experience for many.

See Also

Relative Velocity

Speed and Velocity

Terminal Speed

References

1. Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print.

2. "Velocity." Def. 2. Dictionary.com. N.p., n.d. Web. 29 Nov. 2015.

3. Velocity Expression. Digital image. Physics-Formulas. N.p., n.d. Web. 29 Nov. 2015.

4. Velocity vs Time Graph. Digital image. https://upload.wikimedia.org/wikipedia/commons/a/ae/Velocity-time_graph_example.png. N.p., n.d. Web. 29 Nov. 2015.

External links

The Physics Classroom: Speed and Velocity

HyperPhysics: Average Velocity

YouTube video explaining average vs instantaneous velocity