Calorific Value(Heat of combustion): Difference between revisions
(→Simple) |
|||
Line 34: | Line 34: | ||
===Simple=== | ===Simple=== | ||
A 1.55 gram sample of Ethanol is burned in a bomb calorimeter. | |||
:'''a) If this combustion caused a Temperature increase of 55°C in a 200 gram sample of water, what is the Molar Heat of Combustion of the Ethanol? Water has a Specific Heat Capacity of <math>C = 4.18 \ \frac{J}{g \cdot °C}</math> Ethanol has a molar mass of <math>46.1 \ \frac{g}{mol}</math>.''' | |||
::Using dimensional analysis, we can find the number of moles of Ethanol in the 1.55 gram sample: | |||
:::<math></math> | |||
===Middling=== | ===Middling=== |
Revision as of 10:26, 2 August 2019
Main Idea
The Calorific Value of a sample, also known as its Heat of Combustion, is defined as the amount of heat released during the complete combustion of the sample. For combustion to occur, a hydrocarbon is typically put into contact with oxygen and supplied the necessary activation energy. Once the reaction occurs, carbon dioxide, water, and heat are the products. This newfound heat is usually enough to continue the reaction, allowing a flammable substance to burn until there is none left.
The Heat of Combustion is typically measured through experiments using a bomb calorimeter, where the sample is supplied with excess oxygen. This device measures the temperature change. From this, the Heat of Combustion can be computed using the Thermal Energy Equation.
Mathematical Model
A typical combustion reaction looks like this:
- [math]\displaystyle{ \text{C}_x\text{H}_y\text{N}_z\text{O}_n + \text{O}_2 \longrightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O} + \frac{z}{2}\text{N}_2 \quad Q = \boldsymbol{\Omega} \ \frac{J}{mol} }[/math], where
- [math]\displaystyle{ \bullet \ \text{C}_x = }[/math] [math]\displaystyle{ x }[/math] atoms of Carbon
- [math]\displaystyle{ \bullet \ \text{H}_y = }[/math] [math]\displaystyle{ y }[/math] atoms of Hydrogen
- [math]\displaystyle{ \bullet \ \text{N}_z = }[/math] [math]\displaystyle{ z }[/math] atoms of Nitrogen
- [math]\displaystyle{ \bullet \ \text{O}_n = }[/math] [math]\displaystyle{ n }[/math] atoms of Oxygen gas
- [math]\displaystyle{ \bullet \ x\text{CO}_2 = }[/math] [math]\displaystyle{ x }[/math] moles of Carbon Dioxide
- [math]\displaystyle{ \bullet \ \frac{y}{2}\text{H}_2\text{O} = }[/math] [math]\displaystyle{ \frac{y}{2} }[/math] moles of Water
- [math]\displaystyle{ \bullet \ \frac{z}{2}\text{N}_2 = }[/math] [math]\displaystyle{ \frac{z}{2} }[/math] moles of Nitrogen gas
- [math]\displaystyle{ \bullet \ Q = }[/math] the Heat of Combustion
- [math]\displaystyle{ \bullet \ \boldsymbol{\Omega} = }[/math] a constant
- [math]\displaystyle{ \text{C}_x\text{H}_y\text{N}_z\text{O}_n + \text{O}_2 \longrightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O} + \frac{z}{2}\text{N}_2 \quad Q = \boldsymbol{\Omega} \ \frac{J}{mol} }[/math], where
Let us look at this combustion reaction as an example:
- [math]\displaystyle{ \text{CH}_{3}\text{OH} + \text{O}_2 \longrightarrow \text{CO}_2 + 2\text{H}_{2}\text{O} \quad Q = 890 \ \frac{kJ}{mol} }[/math]
Here we see the Heat of Combustion of [math]\displaystyle{ \text{CH}_{3}\text{OH} }[/math], Methanol, is [math]\displaystyle{ 890 \ \frac{kJ}{mol} }[/math].
It is also always important to keep the Thermal Energy Equation in mind when thinking of these things, since it does relate Heat to a Temperature change:
- [math]\displaystyle{ \Delta Q = mc \Delta T }[/math]
Computational Model
- Insert Computational Model Here
Examples
Simple
A 1.55 gram sample of Ethanol is burned in a bomb calorimeter.
- a) If this combustion caused a Temperature increase of 55°C in a 200 gram sample of water, what is the Molar Heat of Combustion of the Ethanol? Water has a Specific Heat Capacity of [math]\displaystyle{ C = 4.18 \ \frac{J}{g \cdot °C} }[/math] Ethanol has a molar mass of [math]\displaystyle{ 46.1 \ \frac{g}{mol} }[/math].
- Using dimensional analysis, we can find the number of moles of Ethanol in the 1.55 gram sample:
- [math]\displaystyle{ }[/math]
Middling
Difficult
Connectedness
History
See also
Further reading
External links
References
https://en.wikipedia.org/wiki/Heat_of_combustion
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Book%3A_Introductory_Chemistry_(CK-12)/17%3A_Thermochemistry/17.14%3A_Heat_of_Combustion
https://www.ck12.org/chemistry/heat-of-combustion/lesson/Heat-of-Combustion-CHEM/
https://opentextbc.ca/introductorychemistry/chapter/the-mole-in-chemical-reactions-2/