Impulse Momentum: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
===Impulse Momentum Theorem===
===Impulse Momentum Theorem===


The Impulse Momentum Theorem relates the momentum of a body to the force acting on the body. Impulse(J) is also the change in momentum. As a force on a body is applied for a longer amount of time, the impulse increases. If there is a changing force over the same time interval, the impulse also changes. The impulse is the product of the average force and the time interval over which it acts. Like linear momentum, impulse is a vector quantity and has the same direction as the average force. Its units are given in Newton-seconds (Ns).  
The Impulse Momentum Theorem relates the momentum of a body or system to the force acting on the body. Impulse(J) is also the change in momentum. As a force on a body is applied for a longer amount of time, the impulse also changes. If there is a changing force over the same time interval, the impulse also changes. The impulse is the product of the average force and the time interval over which it acts. Like linear momentum, impulse is a vector quantity and has the same direction as the average force. Its units are given in Newton-seconds (Ns).  


A large impulse will cause a large change in an object's momentum, just as a small impulse will cause a smaller change in an object's momentum. When looking at the equation <math>{J} = {d\vec{p}}</math>, one can replace J with the product of the average force and the time interval. Rearranging that equation results in <math>{F} = {\frac{d\vec{p}}{dt}}</math>, which shows that whenever momentum changes with time, there is some force acting on the body.  
A large impulse will cause a large change in an object's momentum, just as a small impulse will cause a smaller change in an object's momentum. When looking at the equation <math>{J} = {d\vec{p}}</math>, one can replace J with the product of the average force and the time interval. Rearranging that equation results in <math>{F} = {\frac{d\vec{p}}{dt}}</math>, which shows that whenever momentum changes with time, there is some force acting on the body.  
To clarify, impulse is the effect of a net force acting on a body over a period of time, while momentum is the force within a body or system due to its total velocity.


====A Mathematical Model====
====A Mathematical Model====

Revision as of 19:15, 29 November 2015

Impulse Momentum

This topic focuses on the impulse of systems during collisions. Claimed by thossain6

Impulse Momentum Theorem

The Impulse Momentum Theorem relates the momentum of a body or system to the force acting on the body. Impulse(J) is also the change in momentum. As a force on a body is applied for a longer amount of time, the impulse also changes. If there is a changing force over the same time interval, the impulse also changes. The impulse is the product of the average force and the time interval over which it acts. Like linear momentum, impulse is a vector quantity and has the same direction as the average force. Its units are given in Newton-seconds (Ns).

A large impulse will cause a large change in an object's momentum, just as a small impulse will cause a smaller change in an object's momentum. When looking at the equation [math]\displaystyle{ {J} = {d\vec{p}} }[/math], one can replace J with the product of the average force and the time interval. Rearranging that equation results in [math]\displaystyle{ {F} = {\frac{d\vec{p}}{dt}} }[/math], which shows that whenever momentum changes with time, there is some force acting on the body.

To clarify, impulse is the effect of a net force acting on a body over a period of time, while momentum is the force within a body or system due to its total velocity.

A Mathematical Model

Impulse can mathematically be defined as the force on a body multiplied by the duration of that force. [math]\displaystyle{ {\frac{d\vec{p}}{dt}} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force. This can be rearranged to represent impulse, J as a relationship between the net force and time of the collision: [math]\displaystyle{ {J} = {d\vec{p}} = \vec{F}_{net}{dt} }[/math]


A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References