Solution for a Single Free Particle: Difference between revisions

From Physics Book
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 23: Line 23:
==Time-independent Potential and Separation of Variables==
==Time-independent Potential and Separation of Variables==


The [[Potential Energy | potential energy]] of a system is often not an explicit function of time, that is <math>\frac{\partial V}{\partial t} = 0</math>. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:


<math>
i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t)
</math>
This, along with the [//en.wikipedia.org/wiki/Spectral_theorem spectral theorem] allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:
<math>
\Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow
i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t)
</math>
Expanding the derivatives through the [//en.wikipedia.org/wiki/Chain_rule chain rule] yields:
<math>
i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t)
</math>
Dividing both sides of the equation by <math>\psi(\vec{r})\phi(t)</math>:
<math>
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r})
</math>
The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully [https://en.wikipedia.org/wiki/Separation_of_variables#Partial_differential_equations separated variables], allowing us to solve for <math>\phi(t)</math> and <math>\psi(\vec{r})</math> separatedely. Doing so yields:
<div class="toccolours">
====Time-Independent Schrödinger Equation for 1 Particle====
<math>- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r})</math>
</div>
<div class="toccolours">
====Space-Independent Schrödinger Equation for 1 Particle====
<math>\frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t)</math>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Derivation of the Time-Independent and Space-Independent Schrödinger Equation====
<div class="mw-collapsible-content">
Start from the Separated Equation for 1 Particle:
<math>
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r})
</math>
Take the derivative of both sides in respect to time:
<math>
i\hbar\left(
\frac{\ddot{\phi}}{\phi}
-\frac{\dot{phi}^2}{phi^2}
\right) = 0
<\math>
</div>
</div>


==References==
==References==

Revision as of 18:22, 16 April 2022

Claimed by Carlos M. Silva (Spring 2022)

The Schrödinger Equation is a linear partial differential equation that governs the wave function of a quantum mechanical system[1]. Similar to Newton's Laws, the Schrödinger Equation is an equation of motion, meaning that it's capable of describing the time-evolution of a position analog of a system.

The free particle is the name given to the system consisting of a single particle subject to a null or constant potential everywhere in space. It's the simplest system to which the Schrödinger Equation has a solution with physical meaning.

Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.

The General Schrödinger Equation

The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in Bra-Ket notation is:

[math]\displaystyle{ i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle }[/math]

Here [math]\displaystyle{ i = \sqrt{-1} }[/math] is the imaginary unit. [math]\displaystyle{ \hbar }[/math] is the reduced Planck's constant. [math]\displaystyle{ \vert\Psi(t)\rangle }[/math] is the state vector of the quantum system at time [math]\displaystyle{ t }[/math], and [math]\displaystyle{ \hat H }[/math] is the Hamiltonian operator. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation:

[math]\displaystyle{ i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) }[/math]

[math]\displaystyle{ \Psi(\vec{r},t) }[/math] becomes the wave function of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math]. [math]\displaystyle{ V(\vec{r},t) }[/math] is the scalar potential energy of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math].

Time-independent Potential and Separation of Variables

The potential energy of a system is often not an explicit function of time, that is [math]\displaystyle{ \frac{\partial V}{\partial t} = 0 }[/math]. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:

[math]\displaystyle{ i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) }[/math]

This, along with the spectral theorem allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:

[math]\displaystyle{ \Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]

Expanding the derivatives through the chain rule yields:

[math]\displaystyle{ i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]

Dividing both sides of the equation by [math]\displaystyle{ \psi(\vec{r})\phi(t) }[/math]:

[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]

The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully separated variables, allowing us to solve for [math]\displaystyle{ \phi(t) }[/math] and [math]\displaystyle{ \psi(\vec{r}) }[/math] separatedely. Doing so yields:

Time-Independent Schrödinger Equation for 1 Particle

[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]

Space-Independent Schrödinger Equation for 1 Particle

[math]\displaystyle{ \frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t) }[/math]

Derivation of the Time-Independent and Space-Independent Schrödinger Equation

Start from the Separated Equation for 1 Particle:

[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]

Take the derivative of both sides in respect to time:

<math> i\hbar\left( \frac{\ddot{\phi}}{\phi} -\frac{\dot{phi}^2}{phi^2} \right) = 0 <\math>

References

  1. Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8.