Predicting Change in multiple dimensions: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 17: Line 17:




<math>\Delta \overrightarrow{p}</math> = <math>\overrightarrow{p}_{final}-\overrightarrow{p}_{initial}</math> = <math>m\overrightarrow{v}_{final}-m\overrightarrow{u}_{initial}</math>
<math>\Delta \overrightarrow{p}</math> = <math>\overrightarrow{p}_{final}-\overrightarrow{p}_{initial}</math> = <math>m\overrightarrow{v}_{final}-m\overrightarrow{v}_{initial}</math>




Line 25: Line 25:
<math>\Delta p = F \Delta t\,</math>
<math>\Delta p = F \Delta t\,</math>


====Relate by Velocity====


Given the velocity:
Given the velocity:
Line 44: Line 46:
<math>\overrightarrow{p} </math> = <math> \left(v_x,v_y,v_z \right) * \mathbf{m} </math>
<math>\overrightarrow{p} </math> = <math> \left(v_x,v_y,v_z \right) * \mathbf{m} </math>


                                = <math> \left(v_x,v_y,v_z \right) * \mathbf{m} </math>
 
= <math> \left(\mathbf{m} v_x,\mathbf{m} v_y,\mathbf{m} v_z \right) </math>
 
 
====Relate by Force====
 
 
 
Given the force:
 
 
<math>\overrightarrow{F} = \left(F_x,F_y,F_z \right) </math>


===A Computational Model===
===A Computational Model===

Revision as of 19:41, 29 November 2015

This page discusses the use of momentum to predict change in multi-dimensions and examples of how it is used.

Claimed by rbose7

The Main Idea

Linear momentum, or translational momentum of an object is equal to the product of the mass and velocity of an object. A change in any of these properties is reflected in the momentum.

If the object(s) are in a closed system not affected by external forces the total momentum of the system cannot change.

We can apply these properties to all three dimensions and use momentum to predict the path an object will follow over time by observing the change in momentum.


A Mathematical Model

This change in momentum is shown by the formula:


[math]\displaystyle{ \Delta \overrightarrow{p} }[/math] = [math]\displaystyle{ \overrightarrow{p}_{final}-\overrightarrow{p}_{initial} }[/math] = [math]\displaystyle{ m\overrightarrow{v}_{final}-m\overrightarrow{v}_{initial} }[/math]


Or by relating it to force:


[math]\displaystyle{ \Delta p = F \Delta t\, }[/math]


Relate by Velocity

Given the velocity:


[math]\displaystyle{ \overrightarrow{v} = \left(v_x,v_y,v_z \right) }[/math]


For an object with mass [math]\displaystyle{ \mathbf{m} }[/math]


The object has a momentum of :


[math]\displaystyle{ \overrightarrow{p} }[/math] = [math]\displaystyle{ \overrightarrow{v} * \mathbf{m} }[/math]

or:

[math]\displaystyle{ \overrightarrow{p} }[/math] = [math]\displaystyle{ \left(v_x,v_y,v_z \right) * \mathbf{m} }[/math]


= [math]\displaystyle{ \left(\mathbf{m} v_x,\mathbf{m} v_y,\mathbf{m} v_z \right) }[/math]


Relate by Force

Given the force:


[math]\displaystyle{ \overrightarrow{F} = \left(F_x,F_y,F_z \right) }[/math]

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page