Rutherford Experiment and Atomic Collisions: Difference between revisions
Line 3: | Line 3: | ||
==Main Idea== | ==Main Idea== | ||
This topic discusses how Rutherford's Gold Foil Experiment helped to demonstrate the physics behind atomic collisions. The experiment led to the discovery of the nucleus. | This topic discusses how Rutherford's Gold Foil Experiment helped to demonstrate the physics behind atomic collisions. The experiment led to the discovery of the nucleus. It also validates two laws of conservation, that of momentum and that of energy. | ||
===A Mathematical Model=== | ===A Mathematical Model=== |
Revision as of 20:49, 1 December 2015
Claimed by: hguthrie6 The gold foil experiment helped make large discoveries in atomic physics.
Main Idea
This topic discusses how Rutherford's Gold Foil Experiment helped to demonstrate the physics behind atomic collisions. The experiment led to the discovery of the nucleus. It also validates two laws of conservation, that of momentum and that of energy.
A Mathematical Model
What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
This topic is related to the study of biochemistry because without the discovery of the nucleus any progress in this field would be limited based on the interaction of atomic particles. This would also hinder the field medicine for very similar reason. Much of the understanding of sciences has its roots in the understanding of the atom and its functions. This experiment and the idea of atomic collisions helped to widen the atomic grasp.
History
With the knowledge of the plum pudding model of the atom, Ernst Rutherford and a small group of scientists set out to discover the properties behind alpha particles. The experiment, now known as the Gold Foil Experiment, was used to test this. It involved launching alpha particles at a small piece of gold foil. It was hypothesized that the alpha particle would be deflected at times, but at an angle because it was assumed that the alpha particle was more dense than the gold foil atom. They registered deflected particles through light emissions that would occur when the alpha particle hit the light source. Much to their surprise, some of the alpha particles they launched bounced straight back. This demonstrated that the gold particle was more massive than expected. It led to the discovery that the atom contained a positively charged nucleus. This was a major break through in the study of the atom in that it showed what the atoms composition was and how it act around other atoms.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page