Electromagnetic Waves: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
Line 12: Line 12:


===A Computational Model===
===A Computational Model===
!DOCTYPE html
https://www.glowscript.org/#/user/sboebel3012/folder/MyPrograms/program/EMWaveVisualization
<html>
<div id="glowscript" class="glowscript">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link type="text/css" href="https://www.glowscript.org/css/redmond/2.1/jquery-ui.custom.css" rel="stylesheet" />
<link type="text/css" href="https://www.glowscript.org/css/ide.css" rel="stylesheet" />
<script type="text/javascript" src="https://www.glowscript.org/lib/jquery/2.1/jquery.min.js"></script>
<script type="text/javascript" src="https://www.glowscript.org/lib/jquery/2.1/jquery-ui.custom.min.js"></script>
<script type="text/javascript" src="https://www.glowscript.org/package/glow.3.2.min.js"></script>
<script type="text/javascript" src="https://www.glowscript.org/package/RSrun.3.2.min.js"></script>
<script type="text/javascript"><!--//--><![CDATA[//><!--
 
// START JAVASCRIPT
;(function() {;
var ρσ_modules = {};
ρσ_modules.pythonize = {};
 
(function(){
    function strings() {
        var string_funcs, exclude, name;
        string_funcs = set("capitalize strip lstrip rstrip islower isupper isspace lower upper swapcase center count endswith startswith find rfind index rindex format join ljust rjust partition rpartition replace split rsplit splitlines zfill".split(" "));
        if (!arguments.length) {
            exclude = (function(){
                var s = ρσ_set();
                s.jsset.add("split");
                s.jsset.add("replace");
                return s;
            })();
        } else if (arguments[0]) {
            exclude = Array.prototype.slice.call(arguments);
        } else {
            exclude = null;
        }
        if (exclude) {
            string_funcs = string_funcs.difference(set(exclude));
        }
        var ρσ_Iter0 = string_funcs;
        ρσ_Iter0 = ((typeof ρσ_Iter0[Symbol.iterator] === "function") ? (ρσ_Iter0 instanceof Map ? ρσ_Iter0.keys() : ρσ_Iter0) : Object.keys(ρσ_Iter0));
        for (var ρσ_Index0 of ρσ_Iter0) {
            name = ρσ_Index0;
            (ρσ_expr_temp = String.prototype)[(typeof name === "number" && name < 0) ? ρσ_expr_temp.length + name : name] = (ρσ_expr_temp = ρσ_str.prototype)[(typeof name === "number" && name < 0) ? ρσ_expr_temp.length + name : name];
        }
    };
    if (!strings.__module__) Object.defineProperties(strings, {
        __module__ : {value: "pythonize"}
    });
 
    ρσ_modules.pythonize.strings = strings;
})();
async function __main__() {
"use strict";
    var display = canvas;
    var scene = canvas();
 
    function round(num, n=0) {return Number(num.toFixed(n))}
 
    var version, print, arange, __name__, type, ρσ_ls, scene, amplitude, speed_of_light, wave_length, frequency, omega, k, length_of_wave, E_arrows, B_arrows, i, t, dt, z;
    version = ρσ_list_decorate([ "3.2", "glowscript" ]);
    Array.prototype['+'] = function(r) {return this.concat(r)}
    Array.prototype['*'] = function(r) {return __array_times_number(this, r)}
    window.__GSlang = "vpython";
    print = GSprint;
    arange = range;
    __name__ = "__main__";
    type = pytype;
    var strings = ρσ_modules.pythonize.strings;
 
    strings();
    "5";
    scene = ρσ_interpolate_kwargs.call(this, canvas, [ρσ_desugar_kwargs({title: "Electromagnetic Wave Simulation", width: 800, height: 600, center: vector(5, 0, 5), background: color.black, forward: vector(1["-u"]()["*"](.5), 1["-u"]()["*"](.5), 1["-u"]()["*"](.5))})]);
    "7";
    amplitude = 1;
    "8";
    speed_of_light = 1;
    "9";
    wave_length = 5;
    "10";
    frequency = speed_of_light["/"](wave_length);
    "11";
    omega = 2["*"](pi)["*"](frequency);
    "12";
    k = 2["*"](pi)["/"](wave_length);
    "13";
    length_of_wave = 20;
    "16";
    E_arrows = ρσ_list_decorate([]);
    "17";
    B_arrows = ρσ_list_decorate([]);
    "18";
    for (var ρσ_Index1 = 0; ρσ_Index1["<"](length_of_wave["+"](1)); ρσ_Index1++) {
        i = ρσ_Index1;
        "19";
        E_arrows.append(ρσ_interpolate_kwargs.call(this, arrow, [ρσ_desugar_kwargs({color: color.red, axis: vector(0, amplitude, 0), shaftwidth: .1, pos: vector(0, 0, i)})]));
        "20";
        B_arrows.append(ρσ_interpolate_kwargs.call(this, arrow, [ρσ_desugar_kwargs({color: color.cyan, axis: vector(amplitude, 0, 0), shaftwidth: .1, pos: vector(0, 0, i)})]));
    }
    "23";
    t = 0;
    "24";
    dt = .01;
    "25";
    while (true) {
        "26";
        (await rate(100));
        "29";
        var ρσ_Iter2 = range(len(E_arrows));
        ρσ_Iter2 = ((typeof ρσ_Iter2[Symbol.iterator] === "function") ? (ρσ_Iter2 instanceof Map ? ρσ_Iter2.keys() : ρσ_Iter2) : Object.keys(ρσ_Iter2));
        for (var ρσ_Index2 of ρσ_Iter2) {
            i = ρσ_Index2;
            "30";
            z = ρσ_getitem(E_arrows, i).pos.z["-"](1["*"](speed_of_light)["*"](t));
            "31";
            ρσ_getitem(E_arrows, i).axis.y = amplitude["*"](sin(k["*"](z)["-"](1["*"](omega)["*"](t))));
            "32";
            ρσ_getitem(B_arrows, i).axis.x = amplitude["*"](cos(k["*"](z)["-"](1["*"](omega)["*"](t))));
        }
        "34";
        t=t["+"](dt);
    }
};
if (!__main__.__module__) Object.defineProperties(__main__, {
    __module__ : {value: null}
});
 
;$(function(){ window.__context = { glowscript_container: $("#glowscript").removeAttr("id") }; __main__() })})()
// END JAVASCRIPT
 
//--><!]]></script>
</div>
</html>


==Examples==
==Examples==

Revision as of 17:12, 13 April 2024

Spencer Boebel '24

Electromagnetic Waves

The Main Idea

An electromagnetic wave is what happens when we put all four of Maxwell's equations together. A changing electric field creates a magnetic field, which changes and creates an electric field, starting it all over again. This is the basic premise of an electric wave, and we shall derive other properties presently.

A Mathematical Model

The mathematical equations that allow us to model this topic are Maxwell's equations; but a simpler way to figure it out is to consider a notion from General Relativity. According to General Relativity, the speed of information is [math]\displaystyle{ c }[/math]. Now consider an electron moving at a velocity [math]\displaystyle{ \vec{v}(t) }[/math]. Now consider an observation point a location [math]\displaystyle{ \vec{r} }[/math] from the electron. Let us say the electron is oscillating, so we have that [math]\displaystyle{ \vec{v}=\cos{t} \vec{k} }[/math]. Then since the information that the electron is moving takes a while to get to the position [math]\displaystyle{ \vec{r} }[/math], so instead of getting the Coulomb field [math]\displaystyle{ \mathbf{E}=\frac{kq_e}{|\vec{r}|^2}\hat{r} }[/math] we get the electric field [math]\displaystyle{ \mathbf{E} = -\frac{q}{4\pi\epsilon_0} \left[ \frac{\mathbf{e}_{r'}}{r'^2} + \frac{r'}{c} \frac{d}{dt} \left(\frac{\mathbf{e}_{r'}}{r'^2}\right) + \frac{1}{c^2} \frac{d^2}{dt^2} \mathbf{e}_{r'} \right] }[/math], where [math]\displaystyle{ \vec{r}' }[/math] is the direction that the electron appears to be according to the observer, but is not actually. The magnetic field can then be written as [math]\displaystyle{ \mathbf{B} = -\frac{\mathbf{e}_{r'} \times \mathbf{E}}{c} }[/math]. Now if you notice the first two terms in the above E-field equation can be dropped at large [math]\displaystyle{ r }[/math] because they drop off with the distance squared. Calculating, we have that our electric field in a wave is [math]\displaystyle{ \mathbf{E} = -\frac{q}{4\pi\epsilon_0 c^2} \frac{d^2 \mathbf{e}_{r'}}{dt^2} }[/math]. The second derivative term is just the derivative of our velocity, so we get that [math]\displaystyle{ \mathbf{E} = \frac{q}{4\pi\|\vec{r}|epsilon_0 c^2}\sin(t) \vec{k} }[/math]. Using the B formula we get that since [math]\displaystyle{ r }[/math] is very large, the [math]\displaystyle{ e_r }[/math] vector and the [math]\displaystyle{ \mathbf{E} }[/math] vector are perpendicular, leading us to calculate B to be [math]\displaystyle{ \mathbf{B} = -\frac{q}{4\pi\epsilon_0|\vec{r}|c^3}\sin(t) \vec{i} }[/math]. So, from our investigations we conclude (by way of the Lorentz formula) that an oscillating point charge will cause a similar oscillation in the same direction over large distances. This movement is how our eyes detect light!

A Computational Model

https://www.glowscript.org/#/user/sboebel3012/folder/MyPrograms/program/EMWaveVisualization

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page