Non-Newtonian Fluids: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:


A non-Newtonian fluid is a specific type of fluid which does not behave in the same manner as regular fluids. The most notable difference in non-Newtonian fluids is that their viscosity is dependent on the shear rate, or the rate that shearing deformation is applied. In a Newtonian fluid, the relationship between the shear rate and force applied can be modeled by a linear curve. Non-Newtonian fluids exhibit a behavior which lacks a clear relationship between the shear rate and force applied, meaning that the viscosity of the fluid changes when a force is applied.   
A non-Newtonian fluid is a specific type of fluid which does not behave in the same manner as regular fluids. The most notable difference in non-Newtonian fluids is that their viscosity is dependent on the shear rate, or the rate that shearing deformation is applied. In a Newtonian fluid, the relationship between the shear rate and force applied can be modeled by a linear curve. Non-Newtonian fluids exhibit a behavior which lacks a clear relationship between the shear rate and force applied, meaning that the viscosity of the fluid changes when a force is applied.   
                               [[File:fluid.jpg]]
                               [[File:thing.jpg]]


==The Main Idea==
==The Main Idea==

Revision as of 15:44, 3 December 2015

Claimed by Kyle Sabell

A non-Newtonian fluid is a specific type of fluid which does not behave in the same manner as regular fluids. The most notable difference in non-Newtonian fluids is that their viscosity is dependent on the shear rate, or the rate that shearing deformation is applied. In a Newtonian fluid, the relationship between the shear rate and force applied can be modeled by a linear curve. Non-Newtonian fluids exhibit a behavior which lacks a clear relationship between the shear rate and force applied, meaning that the viscosity of the fluid changes when a force is applied.

                             

The Main Idea

State, in your own words, the main idea for this topic Electric Field of Capacitor

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

Examples of Non-Newtonian Fluids

  • Ketchup
  • Toothpaste
  • Starch mixed with water
  • Shampoo
  • Blood
  • Custard
  • Paint

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page