Sign of Potential Difference: Difference between revisions
(→Simple) |
No edit summary |
||
Line 38: | Line 38: | ||
:(Path is perpendicular to the electric field.) | :(Path is perpendicular to the electric field.) | ||
:<math>\Delta \vec{x}</math> = <math>x_f</math> - <math>x_i</math> = <5,0,0> - <3,0,0> = <2,0,0> m | :<math>\Delta \vec{x}</math> = <math>x_f</math> - <math>x_i</math> = <5,0,0> - <3,0,0> = <2,0,0> m | ||
:<math>\Delta V</math> = -<math>\vec{E}</math>●<math>\Delta \vec{x}</math> = -<100,0,0>●<0, | :<math>\Delta V</math> = -<math>\vec{E}</math>●<math>\Delta \vec{x}</math> = -<100,0,0>●<0,2,0> = 0 V | ||
===Middling=== | ===Middling=== | ||
If Location A = <3,0,0>, Location B = <5,-3,0> and E = <100, 100, 100> | |||
:<math>\Delta \vec{x}</math> = <math>x_f</math> - <math>x_i</math> = <5,-3,0> - <3,0,0> = <2,-3,0> m | |||
:<math>\Delta V</math> = -<math>\vec{E}</math>●<math>\Delta \vec{x}</math> = -<100,100,200>●<2,-3,0> = <-200,300,0> V | |||
:In x-direction, there is an electric field in the same direction as the path, so the potential difference is negative. | |||
:In y-direction, there is an electric field in the opposite direction of the path, so the potential difference is positive. | |||
:In z-direction, the electric field is perpendicular to the path, so the potential difference is zero. | |||
===Difficult=== | ===Difficult=== | ||
Revision as of 23:37, 21 November 2015
Claimed by Wendy Sheu
This page provides an explanation to determine the sign of potential difference in which the sign shows whether energy is lost or gained by a moving charged particle.
The Main Idea
By determining the direction of path relative to the direction of electric field, the sign of potential difference can then be determined. The sign of potential difference then shows if there is an increase or a decrease in potential energy, as well as kinetic energy.
A Mathematical Model
Potential difference is the product of the electric field [math]\displaystyle{ \vec{E} }[/math] and the relative path [math]\displaystyle{ \Delta x }[/math]:
- [math]\displaystyle{ \Delta V }[/math] = -[math]\displaystyle{ \vec{E} }[/math]●[math]\displaystyle{ \Delta \vec{x} }[/math]
Sign of [math]\displaystyle{ \Delta V }[/math]
- [math]\displaystyle{ \Delta x }[/math] in the direction of [math]\displaystyle{ \vec{E} }[/math]: negative
- [math]\displaystyle{ \Delta x }[/math] in the opposite direction of [math]\displaystyle{ \vec{E} }[/math]: positvie
- [math]\displaystyle{ \Delta x }[/math] is perpendicular to the direction of [math]\displaystyle{ \vec{E} }[/math]: [math]\displaystyle{ \Delta V }[/math]=0
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Simple
If [math]\displaystyle{ x_i }[/math] = <3,0,0> m, [math]\displaystyle{ x_f }[/math] = <5,0,0> m, and [math]\displaystyle{ \vec{E} }[/math] = <100,0,0> V/m:
- (Path is in the same direction as the electric field.)
- [math]\displaystyle{ \Delta \vec{x} }[/math] = [math]\displaystyle{ x_f }[/math] - [math]\displaystyle{ x_i }[/math] = <5,0,0> - <3,0,0> = <2,0,0> m
- [math]\displaystyle{ \Delta V }[/math] = -[math]\displaystyle{ \vec{E} }[/math]●[math]\displaystyle{ \Delta \vec{x} }[/math] = -<100,0,0>●<2,0,0> = -200 V
If [math]\displaystyle{ x_i }[/math] = <5,0,0> m, [math]\displaystyle{ x_f }[/math] = <3,0,0> m, and [math]\displaystyle{ \vec{E} }[/math] = <100,0,0> V/m:
- (Path is in the opposite direction of the electric field.)
- [math]\displaystyle{ \Delta \vec{x} }[/math] = [math]\displaystyle{ x_f }[/math] - [math]\displaystyle{ x_i }[/math] = <3,0,0> - <5,0,0> = <-2,0,0> m
- [math]\displaystyle{ \Delta V }[/math] = -[math]\displaystyle{ \vec{E} }[/math]●[math]\displaystyle{ \Delta \vec{x} }[/math] = -<100,0,0>●<-2,0,0> = 200 V
If [math]\displaystyle{ x_i }[/math] = <3,0,0> m, [math]\displaystyle{ x_f }[/math] = <5,0,0> m, and [math]\displaystyle{ \vec{E} }[/math] = <0,100,0> V/m:
- (Path is perpendicular to the electric field.)
- [math]\displaystyle{ \Delta \vec{x} }[/math] = [math]\displaystyle{ x_f }[/math] - [math]\displaystyle{ x_i }[/math] = <5,0,0> - <3,0,0> = <2,0,0> m
- [math]\displaystyle{ \Delta V }[/math] = -[math]\displaystyle{ \vec{E} }[/math]●[math]\displaystyle{ \Delta \vec{x} }[/math] = -<100,0,0>●<0,2,0> = 0 V
Middling
If Location A = <3,0,0>, Location B = <5,-3,0> and E = <100, 100, 100>
- [math]\displaystyle{ \Delta \vec{x} }[/math] = [math]\displaystyle{ x_f }[/math] - [math]\displaystyle{ x_i }[/math] = <5,-3,0> - <3,0,0> = <2,-3,0> m
- [math]\displaystyle{ \Delta V }[/math] = -[math]\displaystyle{ \vec{E} }[/math]●[math]\displaystyle{ \Delta \vec{x} }[/math] = -<100,100,200>●<2,-3,0> = <-200,300,0> V
- In x-direction, there is an electric field in the same direction as the path, so the potential difference is negative.
- In y-direction, there is an electric field in the opposite direction of the path, so the potential difference is positive.
- In z-direction, the electric field is perpendicular to the path, so the potential difference is zero.
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page