Sparks in Air: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''''In progress'''''--[[User:Brainmurphy|Brainmurphy]] ([[User talk:Brainmurphy|talk]]) 11:43, 4 November 2015 (EST)
The phenomenon of an electric field causing air to ionize such that the air emits light and sound is known as a spark. Sparks occur between two opposing charges, where the electric field between them is strong enough to cause the air molecules to split from their normally stable state, into positive and negative ions that can conduct current.
==The Main Idea==


The phenomenon of an electric field causing air to ionize such that the air emits light and sound is known as a spark. Sparks occur between two opposing charges, where the electric field between them is strong enough to cause the air molecules to split from their normally stable state, into positive and negative ions that can conduct current.  
==The Physical Model==
At a high level of abstraction, the occurrence of a spark is marked by three phases: the ionization of air particles, the propagation of the electric field in the air gap, and the neutralization of charges due to cancellation. These are no finite boundaries between these phases, although there is a general order to them, despite how quickly a spark occurs.  
===Ionization of Air===
In air, there is always some chance occurrence of ionized particles. However, air molecules (most notably Nitrogen and Oxygen) are very stable, so these ions do not make up a significant portion of all air molecules in our atmosphere. These stable molecules require a relatively large amount of energy to separate them from their electrons. Typically, collisions between air particles do not impart enough energy to ionize them -- separate them from some of their electrons.
 
However, in the presence of a strong electric field, chance ions in the accelerate to very high speeds, gaining relatively large amounts of kinetic energy. In a strong enough electric field, these ions gain enough Kinetic energy to break apart air molecules when upon collision. The separation of the electrons from these air molecules creates two more ions: one negative (the electron) and one positive (the N2+ or O2+)
===Propagation of the Electric Field===
Because electric fields are strongest near each of the two opposite charges, the chain reaction of ionization starts there. The new ions created through collisions with the ions accelerated by the electric field also accelerate due to the electric field. These new ions can then cause more air particles to ionize by striking them at high speeds.
The negatively charged ions move towards the positively charged object that started the spark, and the positively charged ions move towards the negatively charged object. As this happens, the charge distribution in the air between the two charged objects changes. Before the spark began, the electric field emanated from the two charged objects. As ions begin to form, the electric field also emanates in part from the ionized air. This causes the electric field between the two charged object to become more uniform, much like when a switch is closed on a circuit.
Eventually, the chain reactions coming from each charged object meet in the middle, and the "circuit" is complete.
===A Mathematical Model===
===A Mathematical Model===



Revision as of 23:26, 3 December 2015

The phenomenon of an electric field causing air to ionize such that the air emits light and sound is known as a spark. Sparks occur between two opposing charges, where the electric field between them is strong enough to cause the air molecules to split from their normally stable state, into positive and negative ions that can conduct current.

The Physical Model

At a high level of abstraction, the occurrence of a spark is marked by three phases: the ionization of air particles, the propagation of the electric field in the air gap, and the neutralization of charges due to cancellation. These are no finite boundaries between these phases, although there is a general order to them, despite how quickly a spark occurs.

Ionization of Air

In air, there is always some chance occurrence of ionized particles. However, air molecules (most notably Nitrogen and Oxygen) are very stable, so these ions do not make up a significant portion of all air molecules in our atmosphere. These stable molecules require a relatively large amount of energy to separate them from their electrons. Typically, collisions between air particles do not impart enough energy to ionize them -- separate them from some of their electrons.

However, in the presence of a strong electric field, chance ions in the accelerate to very high speeds, gaining relatively large amounts of kinetic energy. In a strong enough electric field, these ions gain enough Kinetic energy to break apart air molecules when upon collision. The separation of the electrons from these air molecules creates two more ions: one negative (the electron) and one positive (the N2+ or O2+)

Propagation of the Electric Field

Because electric fields are strongest near each of the two opposite charges, the chain reaction of ionization starts there. The new ions created through collisions with the ions accelerated by the electric field also accelerate due to the electric field. These new ions can then cause more air particles to ionize by striking them at high speeds. The negatively charged ions move towards the positively charged object that started the spark, and the positively charged ions move towards the negatively charged object. As this happens, the charge distribution in the air between the two charged objects changes. Before the spark began, the electric field emanated from the two charged objects. As ions begin to form, the electric field also emanates in part from the ionized air. This causes the electric field between the two charged object to become more uniform, much like when a switch is closed on a circuit. Eventually, the chain reactions coming from each charged object meet in the middle, and the "circuit" is complete.

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness