Iterative Prediction of Spring-Mass System: Difference between revisions
No edit summary |
No edit summary |
||
Line 39: | Line 39: | ||
As with manual iterations, the computational steps are identical: | As with manual iterations, the computational steps are identical: | ||
1) Determine initial parameters (including placement of origin, magnitude of time step, etc) | 1) Determine initial parameters (including placement of origin, magnitude of time step, etc) and constants (spring constant, gravitational constant, etc) | ||
2) Calculate initial position and initial momentum | 2) Calculate initial position and initial momentum |
Revision as of 12:24, 4 December 2015
claimed by kgiles7
The Main Idea
A simple spring-mass system is a basic illustration of the momentum principle. The principle of conservation of momentum can be repeatedly applied to predict the system's future motion.
A Mathematical Model
The Momentum Principle provides a mathematical basis for the repeated calculations needed to predicts the system's future motion. The most useful form of this equation for predicting future motion is referred to as the momentum update form, and can be derived by rearranging the Momentum Principle as shown below:
[math]\displaystyle{ {{Δp}_{system}} = {\vec{F}_{net}{Δt}} }[/math]
[math]\displaystyle{ {\vec{p}_{f} - \vec{p}_{i} = \vec{F}_{net}{Δt}} }[/math]
[math]\displaystyle{ {\vec{p}_{f} = \vec{p}_{i} + \vec{F}_{net}{Δt}} }[/math]
Velocity Update Formula: [math]\displaystyle{ {\vec{v}_{f} = \vec{v}_{i} + \frac{\vec{F}_{net}}{m}}{Δt} }[/math]
Position Update Formula: [math]\displaystyle{ {\vec{r}_{f} = \vec{r}_{i} + \vec{v}_{avg}{Δt}} }[/math]
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
By definition, iterative prediction requires repeated calculations. Computations that require significant time and attention to detail when performed by hand can be done incredibly quickly and accurately by a computer model.
Coding iterative prediction is very similar to writing equations by hand. The same approach is used; the largest difference arises in syntax, as coding requires variables and calculations to be written in a specific format that varies depending on the program used. In the following discussion, VPython will be used to illustrate a computational model of iterative prediction of a spring-mass system.
As with manual iterations, the computational steps are identical:
1) Determine initial parameters (including placement of origin, magnitude of time step, etc) and constants (spring constant, gravitational constant, etc)
2) Calculate initial position and initial momentum
3) Calculate initial forces acting on system, and sum to find net force
4) Update object's momentum
5) Update object's velocity
6) Update object's position
7) Update time
8) Repeat calculations
Click here for GlowScript model
Examples
Simple Example
The simplest example of a spring mass system is one that moves in only one-direction. Consider a massless spring of length 1.0 m with spring constant 40 N/m. If a 1 kg mass is released from rest while the spring is stretched downward to a length of 1.5 m, what is it's position after 0.2 seconds? The mass oscillates vertically, as shown to the right.
Step 1: Set Parameters Before we begin, we must set some parameters that allow the problem to be solved. Since all movement is in the vertical direction, no vector calculation is needed. However, careful attention must be paid to the direction associated with the object's movement and the forces acting on it. For ease in calculations, assume the origin is the point of attachment of the spring to the ceiling above. AS is customary, the positive y-direction will be up, and the negative-y, down. Additionally, the time step used for each iteration must be small enough that we can assume a constant velocity over the interval, but not so large that solving the problem becomes incredibly time-consuming. An appropriately small time step here is approximately 0.1 seconds.
Step 2: Calculate Initial Values Begin by calculating the object's initial momentum and the sum of the forces acting on it. The initial momentum is simply the product of the initial velocity, which is 0 m/s, as the object is released from rest. The forces acting on the mass are the gravitational force exerted by the Earth and the tension exerted by the spring. The net force can be calculated by summing these two forces.
[math]\displaystyle{ {\vec{p}_{i}} = {{m}\cdot\vec{v}_{i}} }[/math]
[math]\displaystyle{ {\vec{p}_{i}} = {{10kg}\cdot{0m/s}} = {0 Ns} }[/math]
[math]\displaystyle{ {\vec{F}_{grav}} = {mg} }[/math]
[math]\displaystyle{ {\vec{F}_{grav}} = {10kg}\cdot{-9.8 m/s/s} = {-9.8 N} }[/math]
[math]\displaystyle{ {\vec{F}_{spring}} = {-kx} }[/math]
[math]\displaystyle{ {\vec{F}_{spring}} = {-40N/m}\cdot{1.0m-1.5m} = {20 N} }[/math]
[math]\displaystyle{ {\vec{F}_{net}} = {\vec{F}_{grav} +{\vec{F}_{spring}}} }[/math]
[math]\displaystyle{ {\vec{F}_{net}} = {-9.8N} +{20 N} = {10.2} }[/math]
Step 3: Update Momentum (Iteration 1)
Using the momentum update formula, calculate the momentum of the mass at the end of the given time step.
[math]\displaystyle{ {\vec{p}_{f} = \vec{p}_{i} + \vec{F}_{net}{Δt}} }[/math]
[math]\displaystyle{ {\vec{p}_{f} = {0Ns} + {10.2N}\cdot{0.1s} = {1.02Ns}} }[/math]
Step 4: Update Velocity (Iteration 1)
[math]\displaystyle{ {\vec{v}_{f} = \vec{v}_{i} + \frac{\vec{F}_{net}}{m}}{Δt} }[/math]
[math]\displaystyle{ {\vec{v}_{f} = {0m/s} + \frac{1.02N}{1 kg}}{0.1s} = {0.102m/s} }[/math]
Step 5: Update Position (Iteration 1)
Using the position update formula, calculate the position of the mass at the end of the given time step. The average velocity used below is the velocity of the mass at the end of the time step. As with all simplifying assumptions, this measurement is not exact. However, it allows for a close enough approximation that the results derived are still valid.
[math]\displaystyle{ {\vec{r}_{f}} = {\vec{r}_{i} + \vec{v}_{avg}{Δt}} }[/math]
[math]\displaystyle{ {\vec{r}_{f}} = {-1.5m} + {0.102m/s}{0.1s} = {-1.398m} }[/math]
Step 6: Update Time (Iteration 1)
[math]\displaystyle{ {\vec{t}_{f}} = {\vec{t}_{i}} + {Δt} }[/math]
[math]\displaystyle{ {\vec{t}_{f}} = {0s} + {0.1s} = {0.1s} }[/math]
Step 7: Repeat Calculations
Repeat the above calculations using the "Iteration Round 1 Final Values" (calculated above) as the "Iteration Round 2 Initial Values".
Step 8: Update Forces (Iteration 2)
The gravitational force on the mass remains constant, and does not need to be recalculated.
[math]\displaystyle{ {\vec{F}_{spring}} = {-kx} }[/math]
[math]\displaystyle{ {\vec{F}_{spring}} = {-40N/m}\cdot{1.0m-1.398m} = {15.92 N} }[/math]
[math]\displaystyle{ {\vec{F}_{net}} = {\vec{F}_{grav} +{\vec{F}_{spring}}} }[/math]
[math]\displaystyle{ {\vec{F}_{net}} = {-9.8N} +{15.92 N} = {6.12N} }[/math]
Step 9: Update Momentum (Iteration 2)
[math]\displaystyle{ {\vec{p}_{f} = \vec{p}_{i} + \vec{F}_{net}{Δt}} }[/math]
[math]\displaystyle{ {\vec{p}_{f} = {1.02Ns} + {6.12N}\cdot{0.1s} = {1.632Ns}} }[/math]
Step 10: Update Velocity (Iteration 2)
[math]\displaystyle{ {\vec{v}_{f} = \vec{v}_{i} + \frac{\vec{F}_{net}}{m}}{Δt} }[/math]
[math]\displaystyle{ {\vec{v}_{f} = {0m/s} + \frac{1.632N}{1 kg}}{0.1s} = {0.1632m/s} }[/math]
Step 11: Update Position (Iteration 2)
[math]\displaystyle{ {\vec{r}_{f}} = {\vec{r}_{i} + \vec{v}_{avg}{Δt}} }[/math]
[math]\displaystyle{ {\vec{r}_{f}} = {-1.398m} + {0.1632m/s}{0.1s} = {-1.2348m} }[/math]
Step 12: State Answer
After 0.2 seconds, the mass is at a position of 1.23 m below the ceiling.
A Note on Iterations: While calculations can be performed manually, as above, it is advisable for more advanced problems that a computer model or similar program be used for such repetitive calculations in order to save time and reduce mathematical errors.
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page