Charged Cylinder: Difference between revisions
Jburkhardt6 (talk | contribs) No edit summary |
Jburkhardt6 (talk | contribs) No edit summary |
||
Line 77: | Line 77: | ||
The electric field from a single ring, on axis, can be approximated as: | The electric field from a single ring, on axis, can be approximated as: | ||
<math>|\vec{E}_{ring}| = \frac{Q}{4π\epsilon_0} (\frac{1}{z^2}-\frac{3R^2}{2z^4}) | <math>|\vec{E}_{ring}| = \frac{Q}{4π\epsilon_0} (\frac{1}{z^2}-\frac{3R^2}{2z^4})</math> | ||
=====Without Approximation===== | =====Without Approximation===== |
Revision as of 13:34, 4 December 2015
Electric Field
Topic reserved by Jennifer Burkhardt
The electric field of a uniformly charged cylinder of length [math]\displaystyle{ L }[/math] and radius [math]\displaystyle{ R }[/math] can be found through viewing the cylinder as a collection of long uniformly charged rods forming a circle or a series of uniformly charged rings stacked on top of another. Before determining which method to use, the point of observation must be decided.
Uniformly Charged Rods
If measuring the electric field of a cylinder from an observation point that is at the center of the cylinder, the method of rods would be most useful.
L≫R
The location vector from the center of a rod can be determined in terms of the angle θ.
[math]\displaystyle{ \vec{r} = \lt 0,0,0\gt - \lt 0,R*sinθ,R*cosθ\gt = \lt 0,-R*sinθ,-R*cosθ\gt }[/math] [math]\displaystyle{ \hat{r} = \frac{\vec{r}}{r} = \lt 0,-sinθ,-cosθ\gt }[/math]
The amount of charge on one of the rods, assuming that the cylinder is complete, is given by:
[math]\displaystyle{ dQ = Q\frac{dθ}{θ(total)} = \frac{Qdθ}{θ(total)} }[/math]
[math]\displaystyle{ dθ }[/math] is the angular width of one rod, and [math]\displaystyle{ θ(total) }[/math] is the angular extent of the cylinder.
The contribution of this individual rod to the total electric field,, assuming that the cylinder is complete, is:
[math]\displaystyle{ \Delta \vec{E} = |\Delta \vec{E}| \vec{r} ≈ \frac{1}{4π\epsilon_0} \frac{2dQ}{L} \frac{1}{R} \lt 0,-sinθ,-cosθ\gt = \frac{1}{4π\epsilon_0} \frac{2}{LR} \frac{Qdθ}{θ(total)} \lt 0,-sinθ,-cosθ\gt }[/math]
To find the total electric field from all of the rods, the integral of the electric field will have to be taken from the x, y, and z components separately.
[math]\displaystyle{ E_x = \int\limits_0^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{2}{LR} \frac{Q}{θ(total)} * 0dθ = 0 }[/math]
[math]\displaystyle{ E_y = \int\limits_{0}^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{2}{LR} \frac{Q}{θ(total)} * (-sinθ)dθ = \frac{1}{4π\epsilon_0} \frac{2Q}{LRθ(total)} cosθ|_{0}^{θ(total)} }[/math]
[math]\displaystyle{ E_z = \int\limits_{0}^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{2}{LR} \frac{Q}{θ(total)} * (-cosθ)dθ = \frac{-1}{4π\epsilon_0} \frac{2Q}{LRθ(total)} sinθ|_{0}^{θ(total)} }[/math]
Without Approximation
The location vector from the center of a rod can be determined in terms of the angle θ.
[math]\displaystyle{ \vec{r} = \lt 0,0,0\gt - \lt 0,R*sinθ,R*cosθ\gt = \lt 0,-R*sinθ,-R*cosθ\gt }[/math] [math]\displaystyle{ \hat{r} = \frac{\vec{r}}{r} = \lt 0,-sinθ,-cosθ\gt }[/math]
The amount of charge on one of the rods, assuming that the cylinder is complete, is given by:
[math]\displaystyle{ dQ = Q\frac{dθ}{θ(total)} = \frac{Qdθ}{θ(total)} }[/math]
[math]\displaystyle{ dθ }[/math] is the angular width of one rod, and [math]\displaystyle{ θ(total) }[/math] is the angular extent of the cylinder.
The contribution of this individual rod to the total electric field, is:
[math]\displaystyle{ \Delta \vec{E} = |\Delta \vec{E}| \vec{r} = \frac{1}{4π\epsilon_0}\frac{dQ}{R*sqrt(R^2+(L/2)^2)} \lt 0,-sinθ,-cosθ\gt = \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Qdθ}{θ(total)} \lt 0,-sinθ,-cosθ\gt }[/math]
To find the total electric field from all of the rods, the integral of the electric field will have to be taken from the x, y, and z components separately.
[math]\displaystyle{ E_x = \int\limits_0^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Q}{θ(total)} * 0dθ = 0 }[/math]
[math]\displaystyle{ E_y = \int\limits_{0}^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Q}{θ(total)} * (-sinθ)dθ = \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Q}{θ(total)} cosθ|_{0}^{θ(total)} }[/math]
[math]\displaystyle{ E_z = \int\limits_{0}^{θ(total)}\ \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Q}{θ(total)} * (-cosθ)dθ = \frac{1}{4π\epsilon_0} \frac{1}{R*sqrt(R^2+(L/2)^2)} \frac{Q}{θ(total)} sinθ|_{0}^{θ(total)} }[/math]
Uniformly Charged Rings
If measuring the electric field of a cylinder from an observation point that is away from the cylinder in the z-direction (assuming that the circles the cylinder is composed of reside in the x-y plane), the method of rings will be most useful.
Reconfigure the middle of the cylinder ([math]\displaystyle{ L/2 }[/math]) to be the origin of the coordinate system, making your observation location [math]\displaystyle{ \lt 0,0,w\gt }[/math] away from the center of the cylinder.
z≫R, z≫L
The location vector from the observation location to a representative ring of charge at location [math]\displaystyle{ \lt 0,0,z\gt }[/math] is:
[math]\displaystyle{ \vec{r} = \lt 0,0,w\gt - \lt 0,0,z\gt = \lt 0,0,w-z\gt }[/math]
The amount of charge on the representative ring at location [math]\displaystyle{ \lt 0,0,z\gt }[/math] with length [math]\displaystyle{ dz }[/math] can be found through:
[math]\displaystyle{ \frac{Q}{L} = \frac{dQ}{dz} }[/math] [math]\displaystyle{ dQ = \frac{Qdz}{L} }[/math]
The electric field from a single ring, on axis, can be approximated as:
[math]\displaystyle{ |\vec{E}_{ring}| = \frac{Q}{4π\epsilon_0} (\frac{1}{z^2}-\frac{3R^2}{2z^4}) }[/math]
Without Approximation
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Find the net electric field at the center of a half cylinder, projected on the z-axis, that is 2 meters long, has a radius of .05 meters (2≫.05), and has a 3 Coulomb charge.
Solution
[math]\displaystyle{ dQ = Q\frac{dθ}{π} = \frac{Qdθ}{π} }[/math]
[math]\displaystyle{ \vec{E}_{net} = \lt x,y,z\gt }[/math]
Middling
Solution
Difficult
Solution
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page