Total Angular Momentum: Difference between revisions
Fatimajamil (talk | contribs) |
Fatimajamil (talk | contribs) |
||
Line 6: | Line 6: | ||
[[File:Translational and Rotational Angular Momentum.png]] | [[File:Translational and Rotational Angular Momentum.png]] | ||
It is conveniant to break apart total angular momentum for a multiparticle system into rotational angular momentum and translational angular momentum. The translational angular momentum is associated with a rotation of the center of mass about some point A. This differs for different choices of the location of point A. The rotational angular momentum is associated with a rotation about the center of mass. The rotational angular momentum is independent of the location of the point A and the motion of the center of mass. | It is conveniant to break apart total angular momentum for a multiparticle system into rotational angular momentum and translational angular momentum. The translational angular momentum is associated with a rotation of the center of mass about some point A. This differs for different choices of the location of point A. The rotational angular momentum is associated with a rotation about the center of mass. The rotational angular momentum is independent of the location of the point A and the motion of the center of mass. | ||
Revision as of 15:08, 25 November 2015
Work in Progress by Fatima Jamil
Total angular momentum can be expressed as . This page explains the breakdown of total angular momentum in these 2 components to help understand the difference between rotational angular momentum and translational angular momentum.
The Main Idea
It is conveniant to break apart total angular momentum for a multiparticle system into rotational angular momentum and translational angular momentum. The translational angular momentum is associated with a rotation of the center of mass about some point A. This differs for different choices of the location of point A. The rotational angular momentum is associated with a rotation about the center of mass. The rotational angular momentum is independent of the location of the point A and the motion of the center of mass.
A Mathematical Model
What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page