Potential Difference at One Location: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
==The Main Idea==
==The Main Idea==


State, in your own words, the main idea for this topic
Usually, we are interested in the potential difference between two different points. However, it is also useful to determine potential at a single location.


In this case, we must define the potential at a location (ex. Location A) as the potential difference between a point infinitely far from all other charged particles and the location we defined.


===A Mathematical Model===
===A Mathematical Model===


What are the mathematical equations that allow us to model this topic. For example <math>{\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}</math> where '''p''' is the momentum of the system and '''F''' is the net force from the surroundings.
'''Potential at One Location'''  
<math>{\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}</math> where '''p''' is the momentum of the system and '''F''' is the net force from the surroundings.


===A Computational Model===
===A Computational Model===

Revision as of 12:10, 5 December 2015

Written by Alex George

The Main Idea

Usually, we are interested in the potential difference between two different points. However, it is also useful to determine potential at a single location.

In this case, we must define the potential at a location (ex. Location A) as the potential difference between a point infinitely far from all other charged particles and the location we defined.

A Mathematical Model

Potential at One Location [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page