Rayleigh Effect: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 6: Line 6:


===A Mathematical Model===
===A Mathematical Model===
:<math> I = I_0 \frac{ 1+\cos^2 \theta }{2 R^2} \left( \frac{ 2 \pi }{ \lambda } \right)^4 \left( \frac{ n^2-1}{ n^2+2 } \right)^2 \left( \frac{d}{2} \right)^6</math>,
:<math> I = I_0 \frac{ 1+\cos^2 \theta }{2 R^2} \left( \frac{ 2 \pi }{ \lambda } \right)^4 \left( \frac{ n^2-1}{ n^2+2 } \right)^2 \left( \frac{d}{2} \right)^6</math>


===A Computational Model===
===A Computational Model===

Revision as of 13:30, 5 December 2015

Rayleigh scattering, named after the British physicist Lord Rayleigh (John William Strutt),is the (dominantly) elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation.

The Main Idea

When light strikes small particles, it bounces off in a different direction in a process called scattering. Rayleigh scattering is the scattering that occurs when the particles are smaller than the wavelength of the light. This is the dispersion of electromagnetic radiation by particles that have a radius less than approximately 1/10 the wavelength of the radiation. The particles may be individual atoms or molecules. It can occur when light travels through transparent solids and liquids, but is most prominently seen in gases. Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle therefore becomes a small radiating dipole whose radiation we see as scattered light.


A Mathematical Model

[math]\displaystyle{ I = I_0 \frac{ 1+\cos^2 \theta }{2 R^2} \left( \frac{ 2 \pi }{ \lambda } \right)^4 \left( \frac{ n^2-1}{ n^2+2 } \right)^2 \left( \frac{d}{2} \right)^6 }[/math]

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page