Escape Velocity: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
:<math>v_e = \sqrt{\frac{2GM}{r}},</math>
:<math>v_e = \sqrt{\frac{2GM}{r}},</math>


where ''G'' is the universal [[gravitational constant]] (''G''&nbsp;=&nbsp;6.67×10<sup>−11</sup>&nbsp;m<sup>3</sup>&nbsp;kg<sup>−1</sup>&nbsp;s<sup>−2</sup>), ''M'' the mass of the body to be escaped, and ''r'' the distance from the [[center of mass]] of the mass ''M'' to the object.<ref group="nb">
where ''G'' is the universal [[gravitational constant]] (''G''&nbsp;=&nbsp;6.67×10<sup>−11</sup>&nbsp;m<sup>3</sup>&nbsp;kg<sup>−1</sup>&nbsp;s<sup>−2</sup>), ''M'' is the mass of the large body to be escaped, and ''r'' the distance from the [[center of mass]] of the mass ''M'' to the object.<ref group="nb"> This equation assumes there is no atmospheric friction and is an ideal scenario with sending an object on a trajectory. In fact, the escape velocity stated here should actually be called escape speed due to the fact that the quantity to be calculated is completely independent of direction. Notice that the equation does not include the mass of the object escaping a large body as escape velocity is only dependent on gravitational force. We also assume that an object is escaping from a uniform body.


===A Mathematical Model===
===A Mathematical Model===

Revision as of 15:50, 5 December 2015

created by Varun Rajagopal

space x

Escape velocity is defined as the minimum velocity required for an object to escape the gravitational force of a large object. The sum of an object's kinetic energy and its Gravitational potential energy is equal to zero. The gravitational potential energy is negative due to the fact that kinetic energy is always positive. The velocity of the object will be be zero at infinite distance from the centre of gravity. There is no net force on an object as it escapes and zero acceleration is perceived.


The Main Idea

The formula for escape velocity at a certain distance from a body is calculated by the formula Template:Cite book

[math]\displaystyle{ v_e = \sqrt{\frac{2GM}{r}}, }[/math]

where G is the universal gravitational constant (G = 6.67×10−11 m3 kg−1 s−2), M is the mass of the large body to be escaped, and r the distance from the center of mass of the mass M to the object.<ref group="nb"> This equation assumes there is no atmospheric friction and is an ideal scenario with sending an object on a trajectory. In fact, the escape velocity stated here should actually be called escape speed due to the fact that the quantity to be calculated is completely independent of direction. Notice that the equation does not include the mass of the object escaping a large body as escape velocity is only dependent on gravitational force. We also assume that an object is escaping from a uniform body.

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page