Energy Density: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 48: Line 48:


==Connectedness==
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is it connected to your major?
#How is it connected to your major?


==Sustainable Energy (Industry Connection)==
==Sustainable Energy (Interest Connection)==
There is currently a significant Global Discussion relating to the future of our energy sources. At this point, we have identified that fossil fuels such as oil or coal are not only limited, but also have an extreme negative impact on the environment. For this reason, there is an effort to find energy sources that not only are unlimited and renewable, but also provide the same amount of efficiency (Energy per volume or weight) as current fossil fuels. The problem is that fossil fuels far and away have the highest energy density of almost any current energy source. The table below shows a comparison of Energy Densities of several different popular fuel sources.  
There is currently a significant Global Discussion relating to the future of our energy sources. At this point, we have identified that fossil fuels such as oil or coal are not only limited, but also have an extreme negative impact on the environment. For this reason, there is an effort to find energy sources that not only are unlimited and renewable, but also provide the same amount of efficiency (Energy per volume or weight) as current fossil fuels. The problem is that fossil fuels far and away have the highest energy density of almost any current energy source. The table below shows a comparison of Energy Densities of several different popular fuel sources.  


Line 91: Line 90:
As you can see, the three fossil fuels have much higher energy densities than the more sustainable options near the bottom. The only exception here is Pressurized Hydrogen, which is exceedingly explosive and dangerous.  
As you can see, the three fossil fuels have much higher energy densities than the more sustainable options near the bottom. The only exception here is Pressurized Hydrogen, which is exceedingly explosive and dangerous.  


For us to truly solve the issue of non-sustainable fuel, the scientists will need to find ways to increase the energy densities of non-fossil fuels before any widespread adoption of them can take place.  
For us to truly solve the issue of non-sustainable fuel, the scientists will need to find ways to increase the energy densities of non-fossil fuels that are more renewable before any widespread adoption of them can take place.
 
===Transportation (Industry)===
 
Currently, what is really driving the sustainable energy movement is transportation. Cars are one of, if not the largest consumer of fossil fuels on the planet. As such, this is one of the forefronts of the Energy Density struggle. Being able to make entirely electric transportation would drastically improve the current fossil fuel problem. Due to the popularity of this issue, there are already several electric and hybrid cars on the market. The current issue is that these cars run on batteries that are simply unable to travel the long distances gas-cars can. This is why energy density is important. We can not have huge cars, as that is incredibly inefficient, aesthetically unappealing, and makes sources of energy be expended faster. For this reason, researchers are searching for ways to make electric (Or other forms) of energy dense enough to compete with gasoline.  


==History==
==History==

Revision as of 18:05, 5 December 2015

by jwilliams436

Energy Density is the idea that different objects and fields store varying amounts of energy throughout their area. Energy Density can relate to many different concepts, including fuel sources such as food or oil, however the more physics relevant element of energy density is how it relates to energy stored in Electric and Magnetic fields.

As it Relates to Electric and Magnetic Fields

Electric Field

A Moving Capcitor Plate Creating a more energy dense electric field
A Moving Capcitor Plate Creating a more energy dense electric field

The typical consideration of Energy as it relates to electric fields is the field's interaction with a particle. However, the Energy Density perspective is much more fundamental. It says that energy is physically stored in electric fields. To wrap your head around this idea, imagine a system of two oppositely charged capacitor plates in which you slowly pull one plate away from the other. In this scenario, the space where there is a sizable electric field increased, due to the energy expended by you. In this sense, energy is stored in the electric field.

Equation and Units

The equation for the Energy Density of an electric field is:

[math]\displaystyle{ Energy Density = \frac{\Delta U}{\Delta V} = \frac{\mathbf{E}^2 \varepsilon_0}{2} }[/math]


Where [math]\displaystyle{ \Delta U }[/math] is the Potential Energy, [math]\displaystyle{ \Delta V }[/math] represents the Volume, [math]\displaystyle{ \mathbf{E} }[/math] is the magnitude of the Electric Field, and [math]\displaystyle{ \varepsilon_0 }[/math] is the vacuum permittivity constant (8.85e-12).

As you can infer from the above equation, the Unit for Energy Density of an Electric Field is [math]\displaystyle{ \frac{J}{m^3} }[/math]. This comes from the fact that Energy is measured in Joules, and volume is measured in meters cubed.

Magnetic Field

In a similar manner that Energy can be stored in an electric field, there is also an energy density associated with a magnetic field. Typically, Magnetic Energy density is associated with solenoids and inductance. We won't go through the full derivation, however this concept can be visualized by imagining a circuit that includes an inducting solenoid. Because the circuit has a power going into an inductor, there is work being done. This work is translated into increasing the strong magnetic field inside of the solenoid, essentially storing energy in a Magnetic field.

Equation and Units

The equation for the Energy Density of a Magnetic Field looks similar to the equation for the Energy Density of an Electric Field.

[math]\displaystyle{ Energy Density = \frac{\Delta U}{\Delta V} = \frac{\mathbf{B}^2}{\mu_0 2} }[/math]

Where [math]\displaystyle{ \Delta U }[/math] is the Potential Energy, [math]\displaystyle{ \Delta V }[/math] represents the Volume, [math]\displaystyle{ \mathbf{B} }[/math] is the magnitude of the Magnetic Field, and [math]\displaystyle{ \varepsilon_0 }[/math] is the magnetic permeability constant (1.25e-6).

Combination of Electric and Magnetic Energy Density

Typically, the Magnetic and Electric Energy Density Equations will be combined to form one equation that accounts for both fields.

[math]\displaystyle{ Energy Density = \frac{\Delta U}{\Delta V} = \frac{\mathbf{E}^2 \varepsilon_0}{2} + \frac{\mathbf{B}^2}{\mu_0 2} }[/math]

Where all units have the same meanings as above. This equation demonstrates that where there are electric or magnetic fields, there is an associated Energy Density that scales with the magnitude of the field squared.

Radiation

High Energy Density Physics

High Energy Density Physics (HEDP) relates to the interactions of matter that energy densities exceeding roughly [math]\displaystyle{ 10^11 Joules }[/math] or more. When energy becomes this dense, the object it is associated with transforms in to a completely new, "4th" state of matter called plasma. Plasma behaves drastically different from other states of matter. For example, under the influence of a magnetic field, it can form unique structures such as filaments and lasers. Currently, there is research going on in this area around fusion plasmas, high intensity lasers, stellar interiors, and supernovae.

Misc

Connectedness

  1. How is it connected to your major?

Sustainable Energy (Interest Connection)

There is currently a significant Global Discussion relating to the future of our energy sources. At this point, we have identified that fossil fuels such as oil or coal are not only limited, but also have an extreme negative impact on the environment. For this reason, there is an effort to find energy sources that not only are unlimited and renewable, but also provide the same amount of efficiency (Energy per volume or weight) as current fossil fuels. The problem is that fossil fuels far and away have the highest energy density of almost any current energy source. The table below shows a comparison of Energy Densities of several different popular fuel sources.

Fuel Source Energy Density (Wh/Kg) Energy Density (Wh/L)
Gasoline 9,000 13,500
Propane 6,600 13,900
Ethanol 6,100 7,850
Liquid Hydrogen 2,600 39,000
Lithium Ion Battery 250 350
Liquid Nitrogen 65 55
Compressed Air 17 34

As you can see, the three fossil fuels have much higher energy densities than the more sustainable options near the bottom. The only exception here is Pressurized Hydrogen, which is exceedingly explosive and dangerous.

For us to truly solve the issue of non-sustainable fuel, the scientists will need to find ways to increase the energy densities of non-fossil fuels that are more renewable before any widespread adoption of them can take place.

Transportation (Industry)

Currently, what is really driving the sustainable energy movement is transportation. Cars are one of, if not the largest consumer of fossil fuels on the planet. As such, this is one of the forefronts of the Energy Density struggle. Being able to make entirely electric transportation would drastically improve the current fossil fuel problem. Due to the popularity of this issue, there are already several electric and hybrid cars on the market. The current issue is that these cars run on batteries that are simply unable to travel the long distances gas-cars can. This is why energy density is important. We can not have huge cars, as that is incredibly inefficient, aesthetically unappealing, and makes sources of energy be expended faster. For this reason, researchers are searching for ways to make electric (Or other forms) of energy dense enough to compete with gasoline.

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page


Path Independence

The potential difference between two locations does not depend on the path taken between the locations chosen.

A Mathematical Model

In order to find the potential difference between two locations, we use this formula [math]\displaystyle{ dV = -\left(E_x*dx + E_y*dy + E_z*dz\right) }[/math], where E is the electric field with components in the x, y, and z directions. Delta x, y, and z are the components of final location minus to the components of the initial location.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Simple Example

In this example, the electric field is equal to [math]\displaystyle{ E = \left(E_x, 0, 0\right) }[/math]. The initial location is A and the final location is C. In order to find the potential difference between A and C, we use [math]\displaystyle{ dV = V_C - V_A }[/math].

Since there are no y and z components of the electric field, the potential difference is [math]\displaystyle{ dV = -\left(E_x*\left(x_1 - 0\right) + 0*\left(-y_1 - 0\right) + 0*0\right) = -E_x*x_1 }[/math]

Let's say there is a location B at [math]\displaystyle{ \left(x_1, 0, 0\right) }[/math]. Now in order to find the potential difference between A and C, we need to find the potential difference between A and B and then between B and C.

The potential difference between A and B is [math]\displaystyle{ dV = V_B - V_A = -\left(E_x*\left(x_1 - 0\right) + 0*0 + 0*0\right) = -E_x*x_1 }[/math].

The potential difference between B and C is [math]\displaystyle{ dV = V_C - V_B = -\left(E_x*0 + 0*\left(-y_1 - 0\right) + 0*0\right) = 0 }[/math].

Therefore, the potential difference A and C is [math]\displaystyle{ V_C - V_A = \left(V_C - V_B\right) + \left(V_B - V_A\right) = E_x*x_1 }[/math], which is the same answer that we got when we did not use location B.