Components: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


claimed by [[User:Bradleyarg|Bradleyarg]]  
claimed by [[User:Bradleyarg|Bradleyarg]]  
{{Infobox electronic component
| name              = Battery
| image            = File:Batteries.jpg
| image_size        = 250
| caption          = Various cells and batteries (top-left to bottom-right): two [[AA battery|AA]], one [[D battery|D]], one handheld [[ham radio]] battery, two [[9-volt battery|9-volt]] (PP3), two [[AAA battery|AAA]], one [[C battery|C]], one [[camcorder]] battery, one [[cordless phone]] battery.
| type              = Power source
| working_principle = [[Electrochemical reactions]], [[Electromotive force]]
| invented          =
| first_produced    = 1800s
| symbol            = [[File:Battery symbol2.svg|110px]]
| symbol_caption    = The [[electronic symbol|symbol]] for a battery in a [[circuit diagram]]. It originated as a schematic drawing of the earliest type of battery, a [[voltaic pile]].
}}




Line 25: Line 11:
An electric '''battery''' is a device consisting of two or more electrochemical cells that convert stored chemical energy into electrical energy. Each cell has a positive terminal, or cathode, and a negative terminal, or anode. The terminal marked positive is at a higher electrical potential energy than is the terminal marked negative. The terminal marked positive is the source of electrons that when connected to an external circuit will flow and deliver energy to an external device. When a battery is connected to an external circuit, electrolytes are able to move as ions within, allowing the chemical reactions to be completed at the separate terminals and so deliver energy to the external circuit. It is the movement of those ions within the battery which allows current to flow out of the battery to perform work.
An electric '''battery''' is a device consisting of two or more electrochemical cells that convert stored chemical energy into electrical energy. Each cell has a positive terminal, or cathode, and a negative terminal, or anode. The terminal marked positive is at a higher electrical potential energy than is the terminal marked negative. The terminal marked positive is the source of electrons that when connected to an external circuit will flow and deliver energy to an external device. When a battery is connected to an external circuit, electrolytes are able to move as ions within, allowing the chemical reactions to be completed at the separate terminals and so deliver energy to the external circuit. It is the movement of those ions within the battery which allows current to flow out of the battery to perform work.


Each half-cell has an electromotive force (or emf), determined by its ability to drive electric current from the interior to the exterior of the cell. The net emf of the cell is the difference between the emfs of its half-cells.<ref name="Saslow 338">Saslow 338.</ref> Thus, if the electrodes have emfs <math>\mathcal{E}_1</math> and <math>\mathcal{E}_2</math>, then the net emf is <math>\mathcal{E}_{2}-\mathcal{E}_{1}</math>; in other words, the net emf is the difference between the reduction potentials of the half-reactions.<ref>Dingrando 666.</ref>
Each half-cell has an electromotive force (or emf), determined by its ability to drive electric current from the interior to the exterior of the cell. The net emf of the cell is the difference between the emfs of its half-cells. Thus, if the electrodes have emfs <math>\mathcal{E}_1</math> and <math>\mathcal{E}_2</math>, then the net emf is <math>\mathcal{E}_{2}-\mathcal{E}_{1}</math>; in other words, the net emf is the difference between the reduction potentials of the half-reactions.
 
The electrical driving force or \displaystyle{\Delta V_{bat}} across the terminals of a cell is known as the terminal voltage (difference) and is measured in volts. The terminal voltage of a cell that is neither charging nor discharging is called the open-circuit voltage and equals the emf of the cell. Because of internal resistance, the terminal voltage of a cell that is discharging is smaller in magnitude than the open-circuit voltage and the terminal voltage of a cell that is charging exceeds the open-circuit voltage.


'''Resistors:'''
'''Resistors:'''
Line 66: Line 54:
Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?
Are there related topics or categories in this wiki resource for the curious reader to explore?  How does this topic fit into that context?


===Further reading===
Books, Articles or other print media on this topic


===External links===
===External links===
Line 76: Line 61:
==References==
==References==


This section contains the the references you used while writing this page
{{Reflist|30em}}
 
== Further reading ==
* Dingrando, Laurel; et al. (2007). Chemistry: Matter and Change. New York: Glencoe/McGraw-Hill. ISBN 978-0-07-877237-5. Ch. 21 (pp. 662–695) is on electrochemistry.
* Fink, Donald G.; H. Wayne Beaty (1978). Standard Handbook for Electrical Engineers, Eleventh Edition. New York: McGraw-Hill. ISBN 0-07-020974-X.
* Knight, Randall D. (2004). Physics for Scientists and Engineers: A Strategic Approach. San Francisco: Pearson Education. ISBN 0-8053-8960-1. Chs. 28–31 (pp. 879–995) contain information on electric potential.
* Linden, David; Thomas B. Reddy (2001). Handbook of Batteries. New York: McGraw-Hill. ISBN 0-07-135978-8.
* Saslow, Wayne M. (2002). Electricity, Magnetism, and Light. Toronto: Thomson Learning. ISBN 0-12-619455-6. Chs. 8–9 (pp. 336–418) have more information on batteries.


[[Category:Which Category did you place this in?]]
[[Category:Which Category did you place this in?]]

Revision as of 18:24, 5 December 2015

This page covers basic electronic components such as resistors, capacitors, and batteries.

claimed by Bradleyarg


The Main Idea

There are 5 basic components need for the class:

Batteries:

An electric battery is a device consisting of two or more electrochemical cells that convert stored chemical energy into electrical energy. Each cell has a positive terminal, or cathode, and a negative terminal, or anode. The terminal marked positive is at a higher electrical potential energy than is the terminal marked negative. The terminal marked positive is the source of electrons that when connected to an external circuit will flow and deliver energy to an external device. When a battery is connected to an external circuit, electrolytes are able to move as ions within, allowing the chemical reactions to be completed at the separate terminals and so deliver energy to the external circuit. It is the movement of those ions within the battery which allows current to flow out of the battery to perform work.

Each half-cell has an electromotive force (or emf), determined by its ability to drive electric current from the interior to the exterior of the cell. The net emf of the cell is the difference between the emfs of its half-cells. Thus, if the electrodes have emfs [math]\displaystyle{ \mathcal{E}_1 }[/math] and [math]\displaystyle{ \mathcal{E}_2 }[/math], then the net emf is [math]\displaystyle{ \mathcal{E}_{2}-\mathcal{E}_{1} }[/math]; in other words, the net emf is the difference between the reduction potentials of the half-reactions.

The electrical driving force or \displaystyle{\Delta V_{bat}} across the terminals of a cell is known as the terminal voltage (difference) and is measured in volts. The terminal voltage of a cell that is neither charging nor discharging is called the open-circuit voltage and equals the emf of the cell. Because of internal resistance, the terminal voltage of a cell that is discharging is smaller in magnitude than the open-circuit voltage and the terminal voltage of a cell that is charging exceeds the open-circuit voltage.

Resistors:

Capacitors:

Switches:

Node:

State, in your own words, the main idea for this topic

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?


External links

Internet resources on this topic

References

http://www.physicsclassroom.com/mmedia/momentum/cthoe.cfm

Further reading

  • Dingrando, Laurel; et al. (2007). Chemistry: Matter and Change. New York: Glencoe/McGraw-Hill. ISBN 978-0-07-877237-5. Ch. 21 (pp. 662–695) is on electrochemistry.
  • Fink, Donald G.; H. Wayne Beaty (1978). Standard Handbook for Electrical Engineers, Eleventh Edition. New York: McGraw-Hill. ISBN 0-07-020974-X.
  • Knight, Randall D. (2004). Physics for Scientists and Engineers: A Strategic Approach. San Francisco: Pearson Education. ISBN 0-8053-8960-1. Chs. 28–31 (pp. 879–995) contain information on electric potential.
  • Linden, David; Thomas B. Reddy (2001). Handbook of Batteries. New York: McGraw-Hill. ISBN 0-07-135978-8.
  • Saslow, Wayne M. (2002). Electricity, Magnetism, and Light. Toronto: Thomson Learning. ISBN 0-12-619455-6. Chs. 8–9 (pp. 336–418) have more information on batteries.