Head-on Collision of Equal Masses: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 80: Line 80:
==Connectedness==
==Connectedness==
This as a real world application of billiard balls (playing pool). All the balls have equal mass, and one ball is shot towards the other one which is stationary. When collision occurs, the ball thta is hit will move at 90 angle from the direction the stricking ball comes. Keeping this mind and with a little practice one's level of playing billiard should increase.
This as a real world application of billiard balls (playing pool). All the balls have equal mass, and one ball is shot towards the other one which is stationary. When collision occurs, the ball thta is hit will move at 90 angle from the direction the stricking ball comes. Keeping this mind and with a little practice one's level of playing billiard should increase.
==History==
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.


== See also ==
== See also ==

Revision as of 21:47, 5 December 2015

Work in progress by mtikhonovsky3

Main Idea

A collision is a brief interaction between large forces. A head-on collision can be between two carts rolling or sliding on a track with low fricton or billiard balls, hockey pucks, or vehicles hitting each other head-on.

In terms of the two carts of equal masses example, the two carts are the system. The Momentum Principle tells us that after the collision the total final x momentum p1xf + p2xf must equal the initial total x momentum p1xi. Before the collision, nonzero energy terms included the kinetic energy of cart 1, K1i, and the internal energies of both carts. After the collision there is internal energy of both carts and kinetic energy of both carts, K1f + K2f.


A Mathematical Model

Head-on Collisions of Equal Masses can be based off the Fundamental Principle of Momentum:

[math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}{Δt} }[/math]

where p is the momentum of the system, F is the net force from the surroundings, Δt is the change in time for the process. Energy Principle:

[math]\displaystyle{ {E}={Q}+{W} }[/math] where E is the total energy, Q is the heat given off, and W is the work done.

If we input the various types of energy in for the total energy such as kinetic, potential, and internal we get

Based off of the Momentum Principle and the Energy Principle, we will explore Head-on Collisions of Equal Masses in two different scenarios: elastic and maximally inelastic (objects become stuck together).

1. Elastic Head-on Collisions of Equal Masses

Momentum Principle:

[math]\displaystyle{ {p_{xf}}={p_{xi}}+{F_{net,x}}{Δt} }[/math]
[math]\displaystyle{ {p_{1xf}}+{p_{2xf}}={p_{1xi}}+{0} }[/math]

Energy Principle:

[math]\displaystyle{ {E_f}={E_i}+{W}+{Q} }[/math]
[math]\displaystyle{ ({K_{1f}}+{E_{int1f}})+({K_{1f}}+{E_{int2f}})=({K_{1i}}+{E_{int1i}})+({K_{2i}}+{E_{int2i}})+{0}+{0} }[/math]
[math]\displaystyle{ {K_{1f}}+{K_{2f}}={K_{1i}}+{0} }[/math]

Since K=p2/2m, we can combine the momentum and energy equations:

[math]\displaystyle{ {\frac{p^{2}_{1xf}}{2m}}+{\frac{p^{2}_{2xf}}{2m}}= {\frac{(p_{1xf}+{p}_{2xf})^2}{2m}} }[/math]
[math]\displaystyle{ {p^2_{1xf}}+{p^2_{2xf}}={p^2_{1xf}}+{2p_{1xf}p_{2xf}}+{p^2_{2xf}} }[/math]
[math]\displaystyle{ {2p_{1xf}p_{2xf}}={0} }[/math]

There are two possible solutions: p1xf =0 or p2xf =0. If p1xf =0, then object 1 came to a full stop. Based on the momentum equation p1xf + p2xf = p2xf = p1xi, then object 2 now has the same momentum that object 1 used to have. There is a complete transfer of momentum from object 1 to object 2, and so, there is also a complete transfer of kinetic energy from object 1 to object 2. If p2xf =0, then p1xf + p2xf = p1xf = p1xi, and so object 1 keeps going, missing object 2. This won't happen if the carts are on the same track. It is not possible for both final momenta to be zero, since the total final momentum of the system must equal the nonzero total initial momentum of the system.

2. Maximally Inelast Collision of Equal Masses

Momentum Principle:

[math]\displaystyle{ {p_{1xf}}+{p_{2xf}}={p_{1xi}} }[/math]
[math]\displaystyle{ {2p_{1xf}}={p_{1xi}} }[/math]
[math]\displaystyle{ {p_{1xf}}={\frac{1}{2}}{p_{1xi}} }[/math]

The final speed of the stuck-together carts is half the initial speed:

[math]\displaystyle{ {v_{f}}={\frac{1}{2}}{v_{i}} }[/math]

Final translational kinetic energy:

[math]\displaystyle{ ({K_{1f}}+{K_{2f}})={2}({\frac{1}{2}}{m}{v^2_{f}}) }[/math]
[math]\displaystyle{ ({K_{1f}}+{K_{2f}})={2}({\frac{1}{2}}{m}({\frac{1}{2}}{v_{i}})^2)={\frac{1}{4}}{m}{v^2_{i}} }[/math]
[math]\displaystyle{ ({K_{1f}}+{K_{2f}})={\frac{K_{1i}}{2}} }[/math]

Energy Principle:

[math]\displaystyle{ {K_{1f}}+{K_{2f}}+{E_{int,f}}={K_{1i}}+{E_{int,i}} }[/math]
[math]\displaystyle{ {E_{int,f}}-{E_{int,i}}={K_{1i}}-({K_{1f}}+{K_{2f}}) }[/math]
[math]\displaystyle{ {ΔE_{int}}={K_{1i}}-{\frac{K_{1i}}{2}} }[/math]
[math]\displaystyle{ {ΔE_{int}}={\frac{K_{1i}}{2}} }[/math]

The Momentum Principle is still valid even though the collision is inelastic, and fundamental principles apply in all situations. The final kinetic energy of the system is only half of the original kinetic energy, which mean that the other half of the original kinetic energy has been dissipated into increased internal energy of the two carts.

From both examples, we know know: 1. If the collision is elastic, object 1 stops and object 2 moves with the speed object 1 used to have. 2. If the collision is maximally inelastic, the carts stick together and move with half the original speed. Half of the original kinetic energy is dissipated into increased internal energy.

A Computational Model

https://trinket.io/embed/glowscript/37540ee8e0

Examples

A 8 kg mass traveling at speed 18 m/s strikes a stationary 8 kg mass head-on, and the two masses stick together. What are the final speeds?

[math]\displaystyle{ {m}{v_{1i}}+{m}{v_{2i}}={m}{v_{f}}+{m}{v_{f}} }[/math]
[math]\displaystyle{ {m}{v_{1i}}+{m}({0})={2m}{v_{f}} }[/math]
[math]\displaystyle{ {8 kg}({18m/s})={2}({8kg}){v_{f}} }[/math]
[math]\displaystyle{ {144kg}{m/s}={16 kg}{v_{f}} }[/math]
[math]\displaystyle{ {v_{f}}={9m/s} }[/math]

Connectedness

This as a real world application of billiard balls (playing pool). All the balls have equal mass, and one ball is shot towards the other one which is stationary. When collision occurs, the ball thta is hit will move at 90 angle from the direction the stricking ball comes. Keeping this mind and with a little practice one's level of playing billiard should increase.

See also

http://www.real-world-physics-problems.com/physics-of-billiards.html

http://archive.ncsa.illinois.edu/Classes/MATH198/townsend/math.html

Further reading

Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print.

External links

http://hyperphysics.phy-astr.gsu.edu/hbase/colsta.html

http://www.scienceclarified.com/everyday/Real-Life-Chemistry-Vol-3-Physics-Vol-1/Momentum-Real-life-applications.html

http://www.physicsclassroom.com/class/momentum/Lesson-2/The-Law-of-Action-Reaction-(Revisited)

References

Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print. This section contains the the references you used while writing this page