Wolfgang Pauli: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 14: Line 14:


===Recognition of the neutrino===
===Recognition of the neutrino===
Neutrinos are pretty much undetectable at first glance. They weigh nothing and interact with nothing. However, with the discovery of beta decady, there way a discovery that the electron carried off less energy than originally anticipated. At first, there was no explanation. Then Wolfgang Pauli wrote a letter, which would quickly become famous, proposing that a light neutral particle with a spin of 1/2 was emitted along with the electron during beta decay. Pauli originally called it a neutron, but was renamed after the current day neutron was discovered.
Detecting this particle was nearly impossible and Pauli even began to think that his prediction may have just been false speculation. After advances in nuclear fission in the 1930's and 40's, this particle was finally detected in a realistic amount.


==Relevance in Modern day Physics==
==Relevance in Modern day Physics==

Revision as of 23:31, 5 December 2015

Short Description of Topic

Early Life and Education

Born April 25, 1900, Wolfgang Pauli was born and raised in Vienna. After completing his early education in Vienna, he studied under Arnold Sommerfield at the University of Munich. He earned his doctorate in 1921 and was an assistant to Max Born, Nobel Prize Winner in 1954 for Physics, at the University of Göttingen. In 1922, Pauli served as the assistant to Niels Bohr, another prominent physicist at the time, in Copenhagen. After serving as a lecturer at the University of Hamburg, Pauli was appointed as Professor of Theoretical Physics at the Federal Institute of Technology in Zurich. He soon progressed to the position of visiting professor at Princeton, University of Michigan, and Purdue University. After the end of World War II, Pauli returned to Zurich to continue his work at the university.

Research and discoveries

Described as one of the leaders of twentieth century physicists, even in his early twenties, Pauli's understanding of topics such as the theory of relativity, led him to early fame. The Pauli Exclusion Principle is his most recognized work, along other discoveries, such as being the first to recognize the existence of the neutrino.

Pauli Exclusion Principle

According to the Pauli Exclusion Principle, no two electrons in an atom can have the same quantum numbers. There are four electronic quantum numbers (n,l,m(l), and m(s)). The spin must always be different. The spin is formed by fermions and bosons. Fermions are particles of half-integer spin. Bosons are particles with integer spin. This means that if the fermions are identical, the bosons must be different, and vice versa.

Recognition of the neutrino

Neutrinos are pretty much undetectable at first glance. They weigh nothing and interact with nothing. However, with the discovery of beta decady, there way a discovery that the electron carried off less energy than originally anticipated. At first, there was no explanation. Then Wolfgang Pauli wrote a letter, which would quickly become famous, proposing that a light neutral particle with a spin of 1/2 was emitted along with the electron during beta decay. Pauli originally called it a neutron, but was renamed after the current day neutron was discovered.

Detecting this particle was nearly impossible and Pauli even began to think that his prediction may have just been false speculation. After advances in nuclear fission in the 1930's and 40's, this particle was finally detected in a realistic amount.

Relevance in Modern day Physics

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Further reading

General Principles of Quantum Mechanics by Wolfgang Pauli, P. Achuthan (Translator), K. Venkatesan (Translator)

Theory of Relativity by Wolfgang Pauli, A. Sommerfeld (Photographer)

External links

For a more detailed explanation regarding fermions and bosons, the link below has a great visual! http://www.particleadventure.org/pauli.html

References

http://www.nobelprize.org/nobel_prizes/physics/laureates/1954/index.html http://www.nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-bio.html


Notable Scientists