Magnus Effect: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 49: Line 49:


== See also ==
== See also ==
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
'''Further reading'''
Further reading


Books, Articles or other print media on this topic
Books, Articles or other print media on this topic
External links
 


For more on the Magnus effect and other physics in baseball, see http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf[http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf]
For more on the Magnus effect and other physics in baseball, see http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf[http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf]


http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242[http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242]
http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242[http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242]
'''External links'''
    A physics resource written by experts for an expert audience Physics Portal
    A wiki book on modern physics Modern Physics Wiki
    The MIT open courseware for intro physics MITOCW Wiki
    An online concept map of intro physics HyperPhysics
    Interactive physics simulations PhET
    OpenStax algebra based intro physics textbook College Physics
    The Open Source Physics project is a collection of online physics resources OSP
    A resource guide compiled by the AAPT for educators ComPADRE





Revision as of 02:56, 6 December 2015

The Magnus effect is the effect in which one can observe a ball or cylinder curving from its initial path of motion through the air. Contents

   1 The Magnus Effect
       1.1 A Mathematical Model
       1.2 A Computational Model
   2 Examples
       2.1 Simple
       2.2 Middling
       2.3 Difficult
   3 Connectedness
   4 History
   5 See also
       5.1 Further reading
       5.2 External links
   6 References


The Magnus Effect

The Magnus Effect is the lift force created on a rotating spherical or cylindrical object about an axis as it moves through a fluid. The force is perpendicular to the forward motion and causes the object to deviate from its standard flight path. Areas of high and low pressure are formed around the object, and the object tends to curve in the direction of low pressure.


A Mathematical Model

The Magnus effect is an application of Bernoulli's theorem. This theorem states that if a fluid has velocity v, the pressure p of that fluid is equal to 1rv^2, with r being the constant fluid density. Since the pressure is normal to the surface of an object, the upward component is -sin(q)p(q). If we integrate the pressure times the surface area of a cylinder with radius r, we get the lift:

F_p = -(rho*Gamma)/4 (1+1/r^2)

If we say r = 1, the net lift can be shown as:

L = -rho*v_0*Gamma

This is the Magnus effect.


A Computational Model

A computational model of the Magnus effect can be observed by this graphic created in VPython: Magnus effect [1]

Connectedness

The Magnus effect can be seen perhaps most commonly in the world of sports. In baseball, pitchers vary their grip, release, and pressure placed on each finger in an effort to maximize the Magnus effect and achieve large levels of break on their pitches.

A breakdown of the Magnus effect in baseball can be seen in this video showing the pitches of legendary Yankees closer Mariano Rivera.[2]


History

Sir Isaac Newton recorded the effects in 1672 after observing the flight of tennis balls at his college in Cambridge. Benjamin Robins also described what would come to be known as the Magnus effect in 1742 after observing the curving of musket balls. However, the effect would be named after German physicist and chemist Gustav Magnus (1802-1870). He experimented


See also

Further reading

Books, Articles or other print media on this topic


For more on the Magnus effect and other physics in baseball, see http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf[3]

http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242[4]

External links


   A physics resource written by experts for an expert audience Physics Portal
   A wiki book on modern physics Modern Physics Wiki
   The MIT open courseware for intro physics MITOCW Wiki
   An online concept map of intro physics HyperPhysics
   Interactive physics simulations PhET
   OpenStax algebra based intro physics textbook College Physics
   The Open Source Physics project is a collection of online physics resources OSP
   A resource guide compiled by the AAPT for educators ComPADRE



[1]



References

http://www.mathpages.com/home/kmath258/kmath258.htm

http://everything.explained.today/Magnus_effect/

http://baseball.physics.illinois.edu/Adair_PhysicsToday_May95.pdf

http://scitation.aip.org/content/aapt/journal/ajp/76/2/10.1119/1.2805242

This section contains the the references you used while writing this page Category:

   Interactions [5]