Resistors*: Difference between revisions
(Created page with "claimed by Benjamin Flamm") |
No edit summary |
||
Line 1: | Line 1: | ||
claimed by Benjamin Flamm | claimed by Benjamin Flamm | ||
Short Description of Topic | |||
Resistors are elements that are inserted into circuits in order to oppose the flow of current. This page gives examples of computing resistance as well as the history, applications, and evolution of resistors. | |||
==The Main Idea== | |||
Resistors have many forms throughout modern technology and are applied in electronic industries ranging from basic manufacturing (lightbulbs, portable devices, etc.) to advanced biomedical instrumentation such as electrocardiogram devices. (electronicdesign.com) | |||
The primary goal of a resistor is to limit the current that flows through a circuit. For example, a lightbulb is a very simple application of Tungsten or another material that has a high resistance. As electrons flow into the lightbulb, they begin to collide with themselves and the high number of charge carriers in the high-resistance filament. The result of these collisions is energy released as light and heat. See the Mathematical Model section for the relationship of these factors and how they determine resistance. | |||
===A Mathematical Model=== | |||
What are the mathematical equations that allow us to model this topic. For example <math>{\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net}</math> where '''p''' is the momentum of the system and '''F''' is the net force from the surroundings. | |||
===A Computational Model=== | |||
How do we visualize or predict using this topic. Consider embedding some vpython code here [https://trinket.io/glowscript/31d0f9ad9e Teach hands-on with GlowScript] | |||
==Examples== | |||
Be sure to show all steps in your solution and include diagrams whenever possible | |||
===Simple=== | |||
===Middling=== | |||
===Difficult=== | |||
==Connectedness== | |||
#How is this topic connected to something that you are interested in? | |||
#How is it connected to your major? | |||
#Is there an interesting industrial application? | |||
==History== | |||
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why. | |||
== See also == | |||
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context? | |||
===Further reading=== | |||
Books, Articles or other print media on this topic | |||
===External links=== | |||
Internet resources on this topic | |||
==References== | |||
This section contains the the references you used while writing this page | |||
[[Category:Which Category did you place this in?]] |
Revision as of 12:39, 17 April 2016
claimed by Benjamin Flamm
Short Description of Topic Resistors are elements that are inserted into circuits in order to oppose the flow of current. This page gives examples of computing resistance as well as the history, applications, and evolution of resistors.
The Main Idea
Resistors have many forms throughout modern technology and are applied in electronic industries ranging from basic manufacturing (lightbulbs, portable devices, etc.) to advanced biomedical instrumentation such as electrocardiogram devices. (electronicdesign.com)
The primary goal of a resistor is to limit the current that flows through a circuit. For example, a lightbulb is a very simple application of Tungsten or another material that has a high resistance. As electrons flow into the lightbulb, they begin to collide with themselves and the high number of charge carriers in the high-resistance filament. The result of these collisions is energy released as light and heat. See the Mathematical Model section for the relationship of these factors and how they determine resistance.
A Mathematical Model
What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page