Gravitational Force: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 31: Line 31:


The solution of the problem involves substituting known values of G (<math>6.673 x 10^{-11}</math>N m<sup>2</sup>/kg<sup>2</sup>), m<sub>1</sub> <math>6 x 10^ {24}</math> kg, m<sub>2</sub> <math>7 x 10^ {22}</math> kg and d <math><2.8 x 10^8,0,-2.8 x 10^8></math> m m into the universal gravitation equation and solving for F<sub>grav</sub>. The solution is as follows:
The solution of the problem involves substituting known values of G (<math>6.673 x 10^{-11}</math>N m<sup>2</sup>/kg<sup>2</sup>), m<sub>1</sub> <math>6 x 10^ {24}</math> kg, m<sub>2</sub> <math>7 x 10^ {22}</math> kg and d <math><2.8 x 10^8,0,-2.8 x 10^8></math> m m into the universal gravitation equation and solving for F<sub>grav</sub>. The solution is as follows:
[[File:Gravitation_force_earth_moon.gif|800px|thumb|right|Gravitational Force Between Moon and Earth]]
[[File:Gravitation_force_earth_moon.gif|700px|thumb|right|Gravitational Force Between Moon and Earth]]


: '''(a)''' The position vector of Moon relative to Earth is,  
: '''(a)''' The position vector of Moon relative to Earth is,  

Revision as of 21:28, 27 November 2015

Main Idea

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Units

In Si Unit, Gravitational Force F is measured in Newtons (N), the two masses, m1 and m2 are measures in kilograms (Kg), the distance is measured in meters (m), and the gravitational constant G is measured in N m2/ kg−2 and has a value of 6.674×10−11 N m2/ kg−2. The Gravitational Constant G have different values for different units. The value of constant G appeared in Newton's law of universal gravitation, but it was not measured until seventy two years after Newton's death by Henry Cavendish with his Cavendish experiment in 1798. The value of gravitational constant was also the first test of Newton's law between two masses in Laboratory.

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Determine the force of gravitational attraction between the earth (m = [math]\displaystyle{ 6 x 10^{24} kg }[/math]) and a 70 kg physics student if the student is standing at sea level, a distance of [math]\displaystyle{ 6.38 x 10^6 m }[/math] from earth's center.

The solution of the problem involves substituting known values of G ([math]\displaystyle{ 6.673 x 10^{-11} }[/math] N m2/kg2), m1 ([math]\displaystyle{ 6 x 10^{24} }[/math] kg), m2 (70 kg) and d ([math]\displaystyle{ 6.38 x 10^6 m }[/math]) into the universal gravitation equation and solving for Fgrav. The solution is as follows:

[math]\displaystyle{ |\mathbf{F_{g}}| = G \frac{m_E m_M}{r^2} }[/math]
[math]\displaystyle{ |\mathbf{F_{g}}| = 6.7x10^{-11} \frac{6e24 * 70}{6.38 x 10^6} }[/math]
[math]\displaystyle{ |\mathbf{F_{g}}| =686 N }[/math]

Middling

The mass of the Earth is [math]\displaystyle{ 6 x 10^ {24} }[/math] kg, and the mass of the Moon is [math]\displaystyle{ 7 x 10^ {22} }[/math] kg. At a particular instance the moon is at location [math]\displaystyle{ \lt 2.8 x 10^8,0,-2.8 x 10^8\gt }[/math] m, in a coordinate system whose origin is at the center of the earth. (a) What is [math]\displaystyle{ \vec{\mathbf{r}} }[/math], the relative position vector from the Earth to the Moon? (b) What is [math]\displaystyle{ |\vec{\mathbf{r}}| }[/math]? (c) What is the unit vector [math]\displaystyle{ \vec{\mathbf{r}} }[/math]? (d) What is the gravitation force exerted by the Earth on the Moon? Your answer should be in vector.

The solution of the problem involves substituting known values of G ([math]\displaystyle{ 6.673 x 10^{-11} }[/math]N m2/kg2), m1 [math]\displaystyle{ 6 x 10^ {24} }[/math] kg, m2 [math]\displaystyle{ 7 x 10^ {22} }[/math] kg and d [math]\displaystyle{ \lt 2.8 x 10^8,0,-2.8 x 10^8\gt }[/math] m m into the universal gravitation equation and solving for Fgrav. The solution is as follows:

Gravitational Force Between Moon and Earth
(a) The position vector of Moon relative to Earth is,
[math]\displaystyle{ \vec{\mathbf{r}} }[/math] = [math]\displaystyle{ \lt 2.8 x 10^8,0,-2.8 x 10^8\gt - \lt 0,0,0\gt }[/math]
[math]\displaystyle{ \vec{\mathbf{r}} }[/math] = [math]\displaystyle{ \lt 2.8 x 10^8,0,-2.8 x 10^8\gt }[/math] m
(b) The magnitude of position vector of Moon relative to Earth is,
[math]\displaystyle{ |\vec{\mathbf{r}}| }[/math] = [math]\displaystyle{ \sqrt{(2.8 x 10^8)^2+0^2+(-2.8 x 10^8)^2} }[/math]
[math]\displaystyle{ |\vec{\mathbf{r}}| }[/math] = [math]\displaystyle{ 4.0 x 10^8 }[/math] m
(c) The unit vector of Moon relative to Earth is,
[math]\displaystyle{ {\mathbf{r}} = \frac {\vec{\mathbf{r}}}{|\vec{\mathbf{r}}|} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \frac{\lt 2.8 x 10^8,0,-2.8 x 10^8\gt }{4.0 x 10^8} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \lt 0.7,0,-0.7\gt }[/math]
(d) The expression for the gravitational force on the Moon by the Earth is,
[math]\displaystyle{ |\vec{\mathbf{F}}_{g}| = G \frac{m_E m_M}{|\vec{\mathbf{r^2}}|} }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g}| = 6.7x10^{-11} \frac{6 x 10^ {24} * 7 x 10^ {22}}{(4.0 x 10^8)^2 } }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g}| = 1.76x10^{20}N }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g} }[/math] = [math]\displaystyle{ -|\mathbf{F_{grav}}|*{\mathbf{r}} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g} }[/math] = [math]\displaystyle{ -1.76x10^{20}*\lt 0.7,0,-0.7\gt N }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g} }[/math] = [math]\displaystyle{ \lt -1.232x10^{20},0,1.232x10^{20}\gt N }[/math]

Difficult

In the following problems you will be asked to calculate the net gravitational force acting on the Moon.To do so, please use the following variables:

Mass
mS - Mass of the Sun
mE - Mass of the Earth
mM - Mass of the Moon
Initial Positions
[math]\displaystyle{ \vec{\mathbf{r_{S}}} }[/math] = [math]\displaystyle{ \lt 0,0,0\gt m }[/math] - Position of the Sun
[math]\displaystyle{ \vec{\mathbf{r_{E}}} }[/math] = [math]\displaystyle{ \lt L,0,0\gt m }[/math] - Position of the Earth
[math]\displaystyle{ \vec{\mathbf{r_{M}}} }[/math] = [math]\displaystyle{ \lt L,h,0\gt m }[/math] - Position of the Moon

(a) Calculate the gravitational force on the Moon due to the Earth (b) Calculate the gravitational force on the Moon due to the Sun (c) Calculate the net gravitational force on the Moon

(a) The gravitational force on the Moon due to the Earth is,

[math]\displaystyle{ \vec{\mathbf{r}} = \vec{\mathbf{r_M}}-\vec{\mathbf{r_E}} }[/math]
[math]\displaystyle{ \vec{\mathbf{r}} = \lt L,h,0\gt -\lt L,0,0\gt }[/math]
[math]\displaystyle{ \vec{\mathbf{r}} = \lt 0,h,0\gt m }[/math]
[math]\displaystyle{ |\vec{\mathbf{r}}| = \sqrt{(0^2+h^2+0^2)} }[/math]
[math]\displaystyle{ |\vec{\mathbf{r}}| = h }[/math] m
[math]\displaystyle{ {\mathbf{r}} = \frac {\vec{\mathbf{r}}}{|\vec{\mathbf{r}}|} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \frac{\lt 0,h,0\gt }{h} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \lt 0,1,0\gt }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g_1}| = G \frac{m_E m_M}{|\vec{\mathbf{r^2}|}} }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g_1}| = G \frac{m_E m_M}{h^2} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g_1} = -|\vec{\mathbf{F}}_{g_1}|*{\mathbf{r}} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g_1} = \lt 0,-G \frac{m_E m_M}{h^2},0\gt N }[/math]

(b) The gravitational force on the Moon due to the Sun is,

[math]\displaystyle{ \vec{\mathbf{r}} = \vec{\mathbf{r_M}}-\vec{\mathbf{r_S}} }[/math]
[math]\displaystyle{ \vec{\mathbf{r}} = \lt L,h,0\gt -\lt 0,0,0\gt }[/math]
[math]\displaystyle{ \vec{\mathbf{r}} = \lt L,h,0\gt m }[/math]
[math]\displaystyle{ |\vec{\mathbf{r}}| = \sqrt{(L^2+h^2+0^2)} }[/math]
[math]\displaystyle{ |\vec{\mathbf{r}}| = \sqrt{(L^2+h^2)} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \frac {\vec{\mathbf{r}}}{|\vec{\mathbf{r}}|} }[/math]
[math]\displaystyle{ {\mathbf{r}} = \frac{\lt L,h,0\gt }{\sqrt{(L^2+h^2)}} }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g_2}| = G \frac{m_S m_M}{|\vec{\mathbf{r^2}|}} }[/math]
[math]\displaystyle{ |\vec{\mathbf{F}}_{g_2}| = G \frac{m_S m_M}{L^2+h^2} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g_2} = -|\vec{\mathbf{F}}_{g_2}|*{\mathbf{r}} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{g_2} = \lt -G \frac{m_S m_M L}{(L^2+h^2)^{3/2}},-G \frac{m_S m_M h}{(L^2+h^2)^{3/2}},0\gt N }[/math]

(c) The net gravitational force on the Moon is,

[math]\displaystyle{ \vec{\mathbf{F}}_{net} = \vec{\mathbf{F}}_{g_1}+\vec{\mathbf{F}}_{g_2} }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{net} = \lt 0,-G \frac{m_E m_M}{h^2},0\gt +\lt -G \frac{m_S m_M L}{(L^2+h^2)^{3/2}},-G \frac{m_S m_M h}{(L^2+h^2)^{3/2}},0\gt }[/math]
[math]\displaystyle{ \vec{\mathbf{F}}_{net} = \lt -G \frac{m_S m_M L}{(L^2+h^2)^{3/2}},-G \frac{m_E m_M}{h^2}-G \frac{m_S m_M h}{(L^2+h^2)^{3/2}},0\gt N }[/math]

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page