Right-Hand Rule: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
'''CLAIMED BY AMIRA ABADIR (Spring 2016)'''
'''CLAIMED BY AMIRA ABADIR (Spring 2016)'''
'''CLAIMED BY Kavin Somu (Fall 2016)'''


==The Main Idea==
==The Main Idea==

Revision as of 15:14, 24 November 2016

CLAIMED BY AMIRA ABADIR (Spring 2016) CLAIMED BY Kavin Somu (Fall 2016)

The Main Idea

The Right-Hand Rule is an easy way to find the direction of a cross product interaction before doing the math.

A Mathematical Model

The Right-Hand Rule is mathamatically modeled by the cross product:

[math]\displaystyle{ \mathbf{u\times v}=(u_2v_3\mathbf{i}+u_3v_1\mathbf{j}+u_1v_2\mathbf{k}) -(u_3v_2\mathbf{i}+u_1v_3\mathbf{j}+u_2v_1\mathbf{k}) }[/math]

A Computational Model

The cross product is used to describe many magnetic interactions, for example, magnetic field created by a moving charge or a current and magnetic force on a particle by a magnetic field. Because of this, using the right hand rule, to determine the direction of a cross product, can be a useful to check behind the math for sign errors.

Follow the chart bellow to find which fingers correspond to which vectors.

[math]\displaystyle{ \mathbf{A\times B}=\mathbf{C} }[/math]
Vector Right-hand Right-hand (alternative)
A First or index Thumb
B Second finger or palm First or index
C Thumb Second finger or palm

Another method for determining the direction of the product orthogonal vector is to place the fingers of your right hand in the direction of the first vector(A). Curl your fingers in the direction of the second vector(B), effectively making the "thumbs up" sign in whichever direction the thumb happens to be pointing. The resulting vector(C) is in the direction in which your thumb is now pointing.

Examples

Magnetic Force on a Moving Particle

[math]\displaystyle{ \mathbf{F} = q\mathbf{v} \times \mathbf{B} }[/math]

The direction of the cross product may be found by application of the right hand rule as follows:

  1. The index finger points in the direction of the momentum vector qv.
  2. The middle finger points in the direction of the magnetic field vector B.
  3. The thumb points in the direction of magnetic force F.

For example, for a positively charged particle moving to the right, in a region where the magnetic field points up, the resultant force points out of the page.

Magnetic Field made by a Current

[math]\displaystyle{ \mathbf{B} = \frac{\mu_0I}{4\pi}\int_{\mathrm{wire}}\frac{\mathrm{d}\boldsymbol{\ell} \times \mathbf{\hat r}}{r^2}, }[/math]

The direction of the cross product may be found by application of the right hand rule as follows:

  1. The thumb points in the direction of current I.
  2. The index finger points in the direction of the observation vector r.
  3. The middle finger points in the direction of the magnetic field vector B.

For example, for a current moving out of the page, the magnetic field points up, when the observation location is to the right of the current.

Force on a Current from a Magnetic Field

[math]\displaystyle{ \mathbf{F} = \mathbf{I} \times \mathbf{B} }[/math]

The direction of the cross product may be found by application of the right hand rule as follows:

  1. The index finger points in the direction of the current I.
  2. The middle finger points in the direction of the magnetic field vector B.
  3. The thumb points in the direction of magnetic force F.

For example, for a current moving into the page, in a region where the magnetic field points up, then the force is to the right of the current.

References

  1. https://en.wikipedia.org/wiki/Right-hand_rule
  2. https://en.wikipedia.org/wiki/Magnetic_field


--Cjacobson7 (talk) 13:45, 10 November 2015 (EST)