Voltage Divider: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Created page with "Work in Progress by [mailto:srijansood@gatech.edu Srijan Sood]")
 
(Add base Voltage Divider Equation)
Line 1: Line 1:
Work in Progress by [mailto:srijansood@gatech.edu Srijan Sood]
Written by [mailto:srijansood@gatech.edu Srijan Sood]
 
Voltage Dividers are real-life applications of resistors that are used in circuits when the input voltage is different than the output voltage required, and also have applications in voltage and sensor measurement .
 
The output voltage is directly proportional to the input voltage, and the ratio of <math>R_1</math> and <math>R_2</math>:
 
:<math> V_\mathrm{out} = \frac{R_2}{R_1+R_2} \cdot V_\mathrm{in} </math>
 
 
This can be arrived at by using Ohm's Law.
:<math> R_\mathrm{T} = R_1 + R_2</math>
:<math>V_\mathrm{in} = I\cdot(R_T)</math>
:<math>V_\mathrm{in} = I\cdot(R_1+R_2)</math>
:<math>V_\mathrm{out} = I\cdot(R_2)</math>
 
:<math>I = \frac {V_\mathrm{in}}{R_1+R_2} = \frac {V_\mathrm{out}}{R_2}</math>
<br>
:<math>V_\mathrm{out} = \frac {R_2}{R_1+R_2} \cdot V_\mathrm{in}</math>

Revision as of 19:16, 9 April 2017

Written by Srijan Sood

Voltage Dividers are real-life applications of resistors that are used in circuits when the input voltage is different than the output voltage required, and also have applications in voltage and sensor measurement .

The output voltage is directly proportional to the input voltage, and the ratio of [math]\displaystyle{ R_1 }[/math] and [math]\displaystyle{ R_2 }[/math]:

[math]\displaystyle{ V_\mathrm{out} = \frac{R_2}{R_1+R_2} \cdot V_\mathrm{in} }[/math]


This can be arrived at by using Ohm's Law.

[math]\displaystyle{ R_\mathrm{T} = R_1 + R_2 }[/math]
[math]\displaystyle{ V_\mathrm{in} = I\cdot(R_T) }[/math]
[math]\displaystyle{ V_\mathrm{in} = I\cdot(R_1+R_2) }[/math]
[math]\displaystyle{ V_\mathrm{out} = I\cdot(R_2) }[/math]
[math]\displaystyle{ I = \frac {V_\mathrm{in}}{R_1+R_2} = \frac {V_\mathrm{out}}{R_2} }[/math]


[math]\displaystyle{ V_\mathrm{out} = \frac {R_2}{R_1+R_2} \cdot V_\mathrm{in} }[/math]