Impulse and Momentum: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 5: Line 5:
Impulse is a vector quantity describing both the nature and duration of a force. It is defined as the time integral of the net force vector: <math>\vec{J} = \int \vec{F}_{net}dt</math>. For constant forces, this simplifies to the product of the force vector and the time interval over which it is applied: <math>\vec{J} = \vec{F}_{net} \Delta t</math>. Impulse is represented by the letter <math>\vec{J}</math>. The most commonly used metric unit for impulse is the Newton*second.
Impulse is a vector quantity describing both the nature and duration of a force. It is defined as the time integral of the net force vector: <math>\vec{J} = \int \vec{F}_{net}dt</math>. For constant forces, this simplifies to the product of the force vector and the time interval over which it is applied: <math>\vec{J} = \vec{F}_{net} \Delta t</math>. Impulse is represented by the letter <math>\vec{J}</math>. The most commonly used metric unit for impulse is the Newton*second.


People are interested in impulse primarily because of its relationship to momentum, as described by the impulse-momentum theorem. The theorem states that if an impulse is exerted on a system, the change in that system's momentum caused by the force is equal to the impulse: <math>\Delta \vec{p} = \vec{J}</math>.
People are interested in impulse primarily because of its relationship to momentum, as described by the impulse-momentum theorem. The theorem states that if an impulse is exerted on a system, the change in that system's momentum caused by the force is equal to the impulse: <math>\Delta \vec{p} = \vec{J}</math>. This works out dimensionally because the units for impulse are equivalent to the units for momentum. For example, the Newton*second is equivalent to the kilogram*meter/second because a Newton is defined as a kilogram*meter/second^2.


===A Mathematical Model===
===A Mathematical Model===

Revision as of 19:01, 19 May 2019

This page defines impulse and describes its relationship to momentum.

The Main Idea

Impulse is a vector quantity describing both the nature and duration of a force. It is defined as the time integral of the net force vector: [math]\displaystyle{ \vec{J} = \int \vec{F}_{net}dt }[/math]. For constant forces, this simplifies to the product of the force vector and the time interval over which it is applied: [math]\displaystyle{ \vec{J} = \vec{F}_{net} \Delta t }[/math]. Impulse is represented by the letter [math]\displaystyle{ \vec{J} }[/math]. The most commonly used metric unit for impulse is the Newton*second.

People are interested in impulse primarily because of its relationship to momentum, as described by the impulse-momentum theorem. The theorem states that if an impulse is exerted on a system, the change in that system's momentum caused by the force is equal to the impulse: [math]\displaystyle{ \Delta \vec{p} = \vec{J} }[/math]. This works out dimensionally because the units for impulse are equivalent to the units for momentum. For example, the Newton*second is equivalent to the kilogram*meter/second because a Newton is defined as a kilogram*meter/second^2.

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page