Solution for a Single Free Particle: Difference between revisions
Carlosmsilva (talk | contribs) |
Carlosmsilva (talk | contribs) |
||
Line 139: | Line 139: | ||
\phi(t) = C_2 e^{C_1 t} | \phi(t) = C_2 e^{C_1 t} | ||
</math> | </math> | ||
Substituting this relation back in the Schrödinger Equation yields: | |||
<math> | |||
C_1 = -i\frac{E+V}{\hbar} | |||
</math> | |||
Therefore: | |||
<math> | |||
\frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar} | |||
</math> | |||
Substituting this relation back in the the Separated Equation for 1 Particle: | |||
<math> | |||
- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) | |||
</math> | |||
Which is the Time-Independent Schrödinger Equation. | |||
:: | :: |
Revision as of 19:13, 16 April 2022
Claimed by Carlos M. Silva (Spring 2022)
The Schrödinger Equation is a linear partial differential equation that governs the wave function of a quantum mechanical system[1]. Similar to Newton's Laws, the Schrödinger Equation is an equation of motion, meaning that it's capable of describing the time-evolution of a position analog of a system.
The free particle is the name given to the system consisting of a single particle subject to a null or constant potential everywhere in space. It's the simplest system to which the Schrödinger Equation has a solution with physical meaning.
Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.
The General Schrödinger Equation
The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in Bra-Ket notation is:
[math]\displaystyle{ i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle }[/math]
Here [math]\displaystyle{ i = \sqrt{-1} }[/math] is the imaginary unit. [math]\displaystyle{ \hbar }[/math] is the reduced Planck's constant. [math]\displaystyle{ \vert\Psi(t)\rangle }[/math] is the state vector of the quantum system at time [math]\displaystyle{ t }[/math], and [math]\displaystyle{ \hat H }[/math] is the Hamiltonian operator. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation:
[math]\displaystyle{ i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) }[/math]
[math]\displaystyle{ \Psi(\vec{r},t) }[/math] becomes the wave function of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math]. [math]\displaystyle{ V(\vec{r},t) }[/math] is the scalar potential energy of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math].
Time-independent Potential and Separation of Variables
The potential energy of a system is often not an explicit function of time, that is [math]\displaystyle{ \frac{\partial V}{\partial t} = 0 }[/math]. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:
[math]\displaystyle{ i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) }[/math]
This, along with the spectral theorem allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:
[math]\displaystyle{ \Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]
Expanding the derivatives through the chain rule yields:
[math]\displaystyle{ i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]
Dividing both sides of the equation by [math]\displaystyle{ \psi(\vec{r})\phi(t) }[/math]:
[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]
The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully separated variables, allowing us to solve for [math]\displaystyle{ \phi(t) }[/math] and [math]\displaystyle{ \psi(\vec{r}) }[/math] separatedely. Doing so yields:
Time-Independent Schrödinger Equation for 1 Particle
[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]
Space-Independent Schrödinger Equation for 1 Particle
[math]\displaystyle{ \frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t) }[/math]
A full derivation of this equations can be found below:
Derivation of the Time-Independent and Space-Independent Schrödinger Equation
Start from the Separated Equation for 1 Particle:
[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]
Take the derivative of both sides in respect to time:
[math]\displaystyle{ i\hbar\left( \frac{\ddot{\phi}}{\phi} -\frac{\dot{\phi}^2}{\phi^2} \right) = 0 }[/math]
From now on, for the sake of simplicity, Newton's Notation will be used to express derivatives. Simplifying the equation above yields:
[math]\displaystyle{ \ddot{\phi}\phi = \dot{\phi}^2 }[/math]
Treat [math]\displaystyle{ \phi }[/math] as an independent variable and define [math]\displaystyle{ v(\phi) = \dot{\phi} }[/math]
[math]\displaystyle{ \frac{d}{dt}\left(\dot{\phi}\right)\phi = \left( \dot{\phi}\right)^2 \rightarrow \frac{d}{dt}\left(v(\phi)\right)\phi = v^2(\phi) }[/math]
By the chain rule:
[math]\displaystyle{ \frac{d\phi}{dt}\frac{dv}{d\phi}\phi = v^2(\phi) \rightarrow \frac{dv}{d\phi}\phi = v(\phi) }[/math]
Re-writting in differential form:
[math]\displaystyle{ \frac{dv}{v}=\frac{d\phi}{\phi} }[/math]
Integrate both sides yields:
[math]\displaystyle{ \int\frac{dv}{v}=\int\frac{d\phi}{\phi} \rightarrow \ln{v} = \ln{\phi} + C_1 }[/math]
Solve for [math]\displaystyle{ v(\phi) }[/math] and simplify arbitrary constants:
[math]\displaystyle{ v(\phi)=C_1\phi }[/math]
Substitute in the definition of [math]\displaystyle{ v(\phi) }[/math]:
[math]\displaystyle{ \frac{d\phi}{dt} = C_1 \phi }[/math]
Rewrite in differential form and integrate:
[math]\displaystyle{ \int \frac{d\phi}{\phi} = \int C_1 dt \rightarrow \ln{\phi} = C_1 t + C_2 }[/math]
Solving for [math]\displaystyle{ \phi }[/math] and simplifying arbitrary constants yields:
[math]\displaystyle{ \phi(t) = C_2 e^{C_1 t} }[/math]
Substituting this relation back in the Schrödinger Equation yields:
[math]\displaystyle{ C_1 = -i\frac{E+V}{\hbar} }[/math]
Therefore:
[math]\displaystyle{ \frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar} }[/math]
Substituting this relation back in the the Separated Equation for 1 Particle:
[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]
Which is the Time-Independent Schrödinger Equation.
References
- ↑ Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8.