Fourier Series and Transform: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
A Fourier series is an expansion of trigonometric functions to model periodic functions. This method proves useful in the study of harmonic systems as the analysis in a more familiar domain is much simpler than in its original domain. It has a variety of applications ranging from signal processing to quantum mechanics. The Fourier Series is defined as: <br><math>f(x)=\sum_{n=1}^{\infty}{a_n\cos{(\frac{nx}{L}})}+\sum_{n=1}^{\infty}{b_n\sin{(\frac{nx}{L}})}</math>
A Fourier series is an expansion of trigonometric functions to model periodic functions. This method proves useful in the study of harmonic systems as the analysis in a more familiar domain is much simpler than in its original domain. It has a variety of applications ranging from signal processing to quantum mechanics. The Fourier Series is defined as: <br><math>f(x)=\sum_{n=1}^{\infty}{a_n\cos{(\frac{nx}{L}})}+\sum_{n=1}^{\infty}{b_n\sin{(\frac{nx}{L}})}</math>
==Intuition==
==Intuition==
Many physical systems can be modeled by square waves. Consider systems with on-off behavior, similar to an on-and-off switch. A square wave looks like this:<br>
Many physical systems can be modeled by square waves. Consider systems with on-off behavior, similar to an on-and-off switch. A sine wave and square wave looks like this respectively:<br>
[[File:squarewave.png|100px|]]
[[File:sinewave.png|300px|]][[File:squarewave.png|300px|]]

Revision as of 23:07, 5 December 2022

A Fourier series is an expansion of trigonometric functions to model periodic functions. This method proves useful in the study of harmonic systems as the analysis in a more familiar domain is much simpler than in its original domain. It has a variety of applications ranging from signal processing to quantum mechanics. The Fourier Series is defined as:
[math]\displaystyle{ f(x)=\sum_{n=1}^{\infty}{a_n\cos{(\frac{nx}{L}})}+\sum_{n=1}^{\infty}{b_n\sin{(\frac{nx}{L}})} }[/math]

Intuition

Many physical systems can be modeled by square waves. Consider systems with on-off behavior, similar to an on-and-off switch. A sine wave and square wave looks like this respectively:
Error creating thumbnail: sh: /usr/bin/convert: No such file or directory Error code: 127