Ampere's Law: Difference between revisions

From Physics Book
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
To be continued by David Kennedy (dkennedy34)--[[User:Dkennedy34|Dkennedy34]] ([[User talk:Dkennedy34|talk]]) 18:01, 2 December 2015 (EST)
A much easier version of the Biot-Savart law that is useful for calculating the magnetic field within a '''closed''' path not a surface. This equation relates the magnetic field and the current to one another. Complete understanding of this topic makes other topics such as the nature of light easier to comprehend.
A much easier version of the Biot-Savart law that is useful for calculating the magnetic field within a '''closed''' path not a surface. This equation relates the magnetic field and the current to one another. Complete understanding of this topic makes other topics such as the nature of light easier to comprehend.



Revision as of 19:29, 2 December 2015

A much easier version of the Biot-Savart law that is useful for calculating the magnetic field within a closed path not a surface. This equation relates the magnetic field and the current to one another. Complete understanding of this topic makes other topics such as the nature of light easier to comprehend.

The Main Idea

State, in your own words, the main idea for this topic Electric Field of Capacitor

A Mathematical Model

[math]\displaystyle{ \oint_C \mathbf{B} \cdot \mathrm{d}\boldsymbol{\ell} = \mu_0 \iint_S \mathbf{J} \cdot \mathrm{d}\mathbf{S} = \mu_0I_\mathrm{enc} }[/math]

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page

Section 22.6 PATTERNS OF MAGNETIC FIELD: AMPERE'S LAW pg. 914- 920