Pendulum Motion
--mbriatta3 (talk) 14:17, 3 December 2015 (EST)
A pendulum is defined as a mass, connected to a rod or rope, that experiences simple harmonic motion as it swings back and forth without friction. The equilibrium position of the pendulum is the position when the mass is hanging directly downward. Consider a pendulum bob connected to a massless rope or rod that is held at an angle from the horizontal. If you release the mass, then the system will swing to position and back again.
The Main Idea
State, in your own words, the main idea for this topic Electric Field of Capacitor
Properties of Pendulum Motion
What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.
Period of Oscillation
Energy
Velocity
A Computational Model
Animation of a pendulum showing forces acting on the mass: the tension T in the rod and the gravitational force mg. Link
Animation of a pendulum showing the velocity and acceleration vectors. Link
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
Talk about clocks
As you see, the pendulum motion can be seen in our everyday life. As an architecture major, I have always been interested art and design. Different sculptures, installations, and art pieces can even be achieved throughout the application of a pendulum motion. Take a look here
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
References
This section contains the the references you used while writing this page