Potential Energy
Work in progress by Matthew Lewine
The Main Idea
State, in your own words, the main idea for this topic
Potential energy is stored energy which results from position or configuration. It is often contrasted with kinetic energy.
In terms of potential energy, its capacity for doing work is a result of its position in a gravitational field (gravitational potential energy), an electric field (electric potential energy), or a magnetic field (magnetic potential energy). It may have elastic potential energy due to a stretched spring or other elastic deformation.
The unit for energy in SI is the joule, which has the symbol J.
The universe's matter flows towards the minimum total potential energy. This cosmic flow is time.
A Mathematical Model
What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
The term potential energy was introduced by the 19th century Scottish engineer and physicist William Rankine, although it has links to Greek philosopher Aristotle's concept of potentiality.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page