Magnetic Field of Coaxial Cable Using Ampere's Law

From Physics Book
Revision as of 22:37, 5 December 2015 by Pbm6 (talk | contribs)
Jump to navigation Jump to search

claimed by Parastoo Baradaran-Mashinchi

Magnetic Field of Coaxial Cable Using Ampere's Law

The Main Idea

A coaxial cable consists of two cylindrical channels, which is how it derives its name. One of the cylinders carries the current in one direction, surround by an insulating region, and a second cylinder carries the current in the opposite direction, and they are both concentric along the same axis. Coaxial cables are common household items used in many electronics because of their ability to avoid external interference from other fields and for their ability to carry currents for long distances and to be able to exclusively carry their signal in the region between the two conductors.


A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page