Total Angular Momentum

From Physics Book
Jump to navigation Jump to search

Work in Progress by Fatima Jamil

Total angular momentum can be expressed as . This page explains the breakdown of total angular momentum in these 2 components to help understand the difference between rotational angular momentum and translational angular momentum.

The Main Idea

It is conveniant to break apart total angular momentum for a multiparticle system into rotational angular momentum and translational angular momentum. The translational angular momentum is associated with a rotation of the center of mass about some point A. This differs for different choices of the location of point A. The rotational angular momentum is associated with a rotation about the center of mass. The rotational angular momentum is independent of the location of the point A and the motion of the center of mass.

A Mathematical Model

It is often convenient to consider the angular momentum of a collection of particles about their center of mass, because this simplifies the mathematics considerably. The angular momentum of a collection of particles is the sum of the angular momenta of each particle:

[math]\displaystyle{ \mathbf{L}=\sum_i \mathbf{R}_i\times m_i \mathbf{V}_i }[/math] where [math]\displaystyle{ R_i }[/math] is the distance of particle i from the reference point, [math]\displaystyle{ m_i }[/math] is its mass, and [math]\displaystyle{ V_i }[/math] is its velocity. The center of mass is defined by:

[math]\displaystyle{ \mathbf{R}=\frac{1}{M}\sum_i m_i \mathbf{R}_i }[/math] where [math]\displaystyle{ M }[/math] is the total mass of all the particles.

If we define [math]\displaystyle{ \mathbf{r}_i }[/math] as the displacement of particle i from the center of mass, and [math]\displaystyle{ \mathbf{v}_i }[/math] as the velocity of particle i with respect to the center of mass, then we have

[math]\displaystyle{ \mathbf{R}_i=\mathbf{R}+\mathbf{r}_i\, }[/math] and [math]\displaystyle{ \mathbf{V}_i=\mathbf{V}+\mathbf{v}_i\, }[/math] In this case, the total angular momentum is:

[math]\displaystyle{ \mathbf{L}=\sum_i (\mathbf{R}+\mathbf{r}_i)\times m_i (\mathbf{V}+\mathbf{v}_i) = \left(\mathbf{R}\times M\mathbf{V}\right) + \left(\sum_i \mathbf{r}_i\times m_i \mathbf{v}_i\right) }[/math]

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

These examples will help to solidify the difference between the different components of total angular momentum.

Simple

A ball falls straight down in the xy plane. Its momentum is shown by the red arrow. What is the direction of the ball's total angular momentum about location A?

When attempting to solve this question, it is important to recognize that there is no rotational angular momentum, because there is no rotation about the center of mass. The only thing that is happening is that the center of mass is translating from some point A. In this case since there is only translational angular momentum, we would simply find the direction of the total angular momentum by using our right hand rule [hint: r points from A to the ball, and the momentum is pointing in the -y direction]

The direction of the ball's total angular momentum is in the -z direction.

Middling

This example shows the importance of understanding the difference between rotational and translational angular momentum.

a) Calculate Lrot (both magnitude and direction)

b) Calculate Ltrans,B (both magnitude and direction)


c) Calculate Ltotal,B (both magnitude and direction)

Due to the fact that...

We calculated that our Lrot is zero, our total angular momentum is just based on translational angular momentum. So in this case, total angular momentum = translational angular momentum. So total angular momentum is 9.72 kgm^2/s, with the same direction, into the page.

Difficult

This problem shows an example of total angular momentum being based off both translational angular momentum and rotational angular momentum.

a) Calculate Lrot (both magnitude and direction)

b) Calculate Ltrans,B (both magnitude and direction)

c) Calculate Ltotal,B (both magnitude and direction)

The total angular momentum is rotational + translational so it is <0,0,-11.16> kgm^2/s

Connectedness

Total angular momentum is very interesting to witness in the orbit of planets and satellites.

This image shows the translational angular momentum of the Earth (relative to the location of the Sun) and the rotational angular momentum (relative to the center of mass of the Earth).

It is also important to note that for point particle systems that there is no rotational angular momentum, and only translational angular momentum. This is important, because the total angular momentum for a point particle system is just simply translational angular momentum.

Understanding the topic of total angular momentum is extremely important in applying the conservation of angular momentum. Due to the fact that angular momentum is conserved, then it is important to note that if there is net force on some body directed towards a fix point, the center, then there is no torque on the body with respect to the center, and the angular momentum of the body about the center is constant. There is a very useful application of constant angular momentum, specifically seen in dealing with the orbits of planets and satellites. This concept is also used for the Bohr model of the atom.

History

Newton, in the Principia, hinted at angular momentum in his examples of the First Law of Motion,

"A top, whose parts by their cohesion are perpetually drawn aside from rectilinear motions, does not cease its rotation, otherwise than as it is retarded by the air. The greater bodies of the planets and comets, meeting with less resistance in more free spaces, preserve their motions both progressive and circular for a much longer time." However, his geometric proof of the Law of Areas is an outstanding example of Newton's genius, and indirectly proves angular momentum conservation in the case of a central force.

In 1736 Euler, like Newton, touched on some of the equations of angular momentum in his Mechanica without further developing them.

Bernoulli wrote in a 1744 letter of a "moment of rotational motion", possibly the first conception of angular momentum as we now understand it.

In 1799, Pierre-Simon Laplace first realized that a fixed plane was associated with rotation — his invariable plane.

Louis Poinsot in 1803 began representing rotations as a line segment perpendicular to the rotation, and elaborated on the "conservation of moments".

In 1852 Léon Foucault used a gyroscope in an experiment to display the Earth's rotation.

William J. M. Rankine's 1858 Manual of Applied Mechanics defined angular momentum in the modern sense for the first time:

"...a line whose length is proportional to the magnitude of the angular momentum, and whose direction is perpendicular to the plane of motion of the body and of the fixed point, and such, that when the motion of the body is viewed from the extremity of the line, the radius-vector of the body seems to have right-handed rotation."

See also

Further reading

Books, Articles or other print media on this topic:

Elementary Theory of Angular Momentum (Dover Books on Physics) by M.E. Rose

Matter and Interactions by Ruth W. Chabay and Bruce A. Sherwood

http://chaos.utexas.edu/wp-uploads/2012/03/Angular_Momentum_21.pdf

Video Content

Videos on Total Angular Momentum:

https://www.youtube.com/watch?v=8SfRmqSQENU&index=34&list=PL9HgJKLOnKxedh-yIp7FDzUTwZeTeoR-Y

https://www.youtube.com/watch?v=nFSMu3bxXVA

https://www.youtube.com/watch?v=diZDoY07LG4

https://www.youtube.com/watch?v=iWSu6U0Ujs8

External links

http://www.phy.duke.edu/~lee/P53/sys.pdf

http://farside.ph.utexas.edu/teaching/301/lectures/node120.html

https://www.physics.purdue.edu/webapps/index.php/course_document/index/phys172/1332/135/9703

http://www.sparknotes.com/testprep/books/sat2/physics/chapter10section6.rhtml

http://hyperphysics.phy-astr.gsu.edu/hbase/amom.html

References

https://www.chegg.com/homework-help

http://www.sparknotes.com/physics/rotationalmotion/angularmomentum/section1.rhtml

http://www.phy.duke.edu/~lee/P53/sys.pdf

http://farside.ph.utexas.edu/teaching/301/lectures/node120.html

https://www.physics.purdue.edu/webapps/index.php/course_document/index/phys172/1332/135/9703

http://hyperphysics.phy-astr.gsu.edu/hbase/amom.html

http://www.sparknotes.com/testprep/books/sat2/physics/chapter10section6.rhtml

Professor Gumbart [Georgia Institute of Technology] Lecture Notes

https://en.wikipedia.org/wiki/Angular_momentum