Angular Momentum Compared to Linear Momentum

From Physics Book
Jump to navigation Jump to search

claimed by jmcmahon9

The Main Idea

Linear momentum is great and all, but angular momentum is where the magic of physics kicks into high gear. See the transition of motion from translational to rotational calls for adding another variable that drastically changes the equations for linear motion that we know and love. The two that I will focus on are the equations for both angular and linear momentum.

Linear momentum is relatively simple, it depends upon the mass and velocity of an object, and to an extent the equation for angular momentum mimics the equation for linear momentum, but angular momentum draws a relationship between mass, velocity, AND the radius from the axis to the mass about which it is rotating. Now that your motion is relative to an axis, all of a sudden WHERE your mass is in relation to that axis MATTERS, and so the radius wriggles its way into the equations for linear motion, which makes these new equations have similar form but function in a completely different way.

A Mathematical Model

In a linearly moving system, there is only one type of movement (translational motion), and so it is relatively simple to calculate the momentum of single objects or the momentum of a system which would just be the addition of the momentum for each part.

  1. Linear momentum: [math]\displaystyle{ \vec{p} = m\vec{v} }[/math]

However in a rotational system, we have two different subcategories for angular momentum: translational and rotational. Translational angular momentum depends upon a part's component of momentum that is orthogonal to the radius from a point of reference. Rotational angular momentum depends upon the moment of inertia of each part and how fast it rotates around its own axis, so the point of reference does not play a part in rotational angular momentum (unless the object you are calculating for is coincidentily spinning around that exact point).

  1. Rotational angular momentum: [math]\displaystyle{ \vec{L}_{rot} = I\vec{ω} }[/math]
  2. Translational angular momentum: [math]\displaystyle{ \vec{L}_{trans} = |\vec{r}||\vec{p}|sin{θ} }[/math]
    1. for the direction you can use the right hand rule.
  3. Total angular momentum: [math]\displaystyle{ \vec{L}_{tot} = \vec{L}_{rot} + \vec{L}_{trans} }[/math]

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page